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A B S T R A C T

In binary protocol reverse engineering, researchers need to analyze
and document the structure of packets. But there is no effective tool
to annotate packet data and develop protocol dissectors. Existing
software to analyze binary data usually either has no support for
packet-based captures, or lacks annotation and on-the-fly parsing
features. In this thesis, we develop PRE Workbench, a software that
supports reverse engineers in analyzing proprietary binary protocols,
using a custom-built viewer for binary data and a specialized descrip-
tion language for binary protocol structures. Our software supports
verifying the documented structure with fast round-trip times as well
as generating Wireshark dissectors as output. User studies and tests on
known protocols show that our software simplifies reverse engineering
of protocols and creating dissectors for them.

Z U S A M M E N FA S S U N G

Beim Reverse Engineering von Binärprotokollen müssen Forscher die
Struktur der Pakete analysieren und dokumentieren. Es gibt jedoch
kein effektives Werkzeug zur Annotierung von Paketdaten und zur
Entwicklung von Protokoll-Dissektoren. Bestehende Software für die
Analyse von Binärdaten bietet in der Regel entweder keine Unterstüt-
zung für paketbasierte Eingabedaten oder es fehlt an Annotations- und
Parsing-Funktionen. In dieser Arbeit entwickeln wir PRE Workbench,
eine Software, die Reverse Engineers bei der Analyse von proprietä-
ren Binärprotokollen unterstützt, indem sie einen maßgeschneiderten
Viewer für Binärdaten und eine spezielle Beschreibungssprache für
binäre Protokollstrukturen verwendet. Unsere Software unterstützt
die schnelle Verifizierung der dokumentierten Struktur sowie die
Generierung von Wireshark-Dissektoren daraus. Nutzerstudien und
Tests mit bereits bekannten Protokollen zeigen, dass diese Softwa-
re das Reverse-Engineering von Protokollen und die Erstellung von
Dissektoren vereinfacht.
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1
I N T R O D U C T I O N

This thesis revolves around the reverse engineering of proprietary
transmission protocols based on binary, i.e., non-text-based data struc-
tures. We design, implement and evaluate the tool PRE Workbench,
that interactively supports reverse engineers in this process. In the
following sections, we give a brief overview of the motivation for why
reverse engineering is done and why this tool is useful. We show
what this tool contributes to research, and provide an outline of the
structure of this document.

1.1 motivation

There are various reasons to analyze proprietary protocols. First of all,
it can be useful as part of fundamental research to investigate the data
structure and functionality of a protocol in order to publish this as a
paper or use it as a starting point for further research.

Subsequently, this information can be used in the context of security
audits to find security vulnerabilities in the protocol structure or in
implementations. While manual reversing usually finds logic bugs,
finding memory corruption bugs in protocol implementations can
be automated with fuzzing. Fuzzing is more efficient with detailed
protocol knowledge. Furthermore, one can establish compatibility on
this basis, i.e. by developing free software compatible with proprietary
devices. For example, one could develop a free alternative to an ex-
isting non-free app, or develop an open-source server for IoT devices
that have been discontinued by the manufacturer or whose manufac-
turer cloud is not trustworthy. Finally, one can also perform privacy
audits to find out what data is actually being transferred, whether it is
transferred securely, and whether the device is compliant with privacy
regulations.

From our own experience reversing protocols, as well as questions
and projects online, we saw the need for a tool to support the manual
protocol reverse engineering process. There are many existing tools
for reversing binary file formats, as well as for inspecting well-known
protocols. However, we could hardly find interactive software that
supports the reverse engineering of unknown protocols. By interview-
ing researchers who reverse engineer on a regular basis, we were able
to confirm the lack of and need for such tooling.

1



2 introduction

1.2 contributions

This inspired us to develop PRE Workbench (see Figure 1), a software to
support researchers in reverse engineering protocols and documenting
the results. Therefore, we conducted a user study to find out, which
features researchers would like to see in an interactive tool to support
their work. Our software supports various sources to import protocol
traffic from, helps the discovery process by displaying different views
and heuristic-based highlighting on data, and aids in documenting and
sharing findings. PRE Workbench is published under an open-source
license [69].

Figure 1: Screenshot of PRE Workbench

1.3 structure

In the following Chapter 2, we introduce theoretical concepts required
to understand the later topics. After that, we conduct a review of
related publications and software in Chapter 3. Chapter 4 explains the
design process, core concepts and architecture of PRE Workbench, the
tool we build. As a starting point for the design process, we conducted
user interviews with several researchers, which we summarize here.
In Chapter 5 we go into details of the software development, including
the Graphical User Interface (GUI) components, parser, and Wireshark
dissector generation. The evaluation in Chapter 6 is based on the
one hand on a continuation of the user study from Chapter 4, on
the other hand we examine, how well the description language is
applicable to some exemplary protocols and how fast the parsers
work. In Chapter 7 we discuss the results of our work and present
possible future work. Finally, we conclude the thesis in Chapter 8,
summarizing our contribution.



2
B A C K G R O U N D

This chapter contains definitions and explanations of the concepts,
methods and data structures used in the later chapters of this thesis.
It can be referred to later on, as the following sections are referenced
when the concepts are first used.

2.1 definitions

In this section, we define different approaches to reverse engineering.

2.1.1 Reverse Engineering

In general, Reverse Engineering (RE) is "the process of studying an-
other company’s product to see how it is made, sometimes in order
to be able to copy it" [49]. In the context of software, it usually means
binary reverse engineering, so analyzing the compiled binary of a pro-
prietary software, without having access to the source code. We can
further divide this into static and dynamic RE. In static RE, a disassem-
bler or decompiler is used to recreate human-readable code from the
compiled binary executable, which is in turn studied by the reverse
engineer. In the dynamic variant, the binary is executed, while closely
monitoring its control flow and memory contents using a debugger,
allowing the reverse engineer to study the runtime behaviour of the
application [17].

2.1.2 Protocol Reverse Engineering

In contrast, Protocol Reverse Engineering (PRE) is the process of ana-
lyzing and documenting a communication protocol at the application
or network layer, understanding the syntax and the semantics, some-
times in order to build a compatible protocol implementation. Based
on the classifications by Kleber, Maile, and Kargl [28] and Li and Chen
[30], we categorize PRE approaches in two main categories and a
combination thereof:

• Entity analysis uses regular software RE methods, including static
and dynamic binary RE, on implementations of the protocol
(called entities). It is also called program-based PRE.

• Trace or traffic analysis, also termed network-based PRE, relies
only on the traffic between entities. Static Trace Analysis (STA)
requires only passive listening capabilities on the communication

3



4 background

medium, but no manipulation of an end entity. Offline analysis
of previously recorded traces is possible, making it reproducible
and allowing for usage of non-real-time algorithms. In dynamic
traffic analysis the entity is stimulated by injecting packets or
interacting with e.g. a device’s user interface.

• Hybrid approaches combine entity and trace analysis and are
commonly employed when performing manual analysis of com-
plex protocols.

2.2 user studies

User studies can be conducted in all stages of a software development
project [55]. In the product development phase they can influence
the foundational goals of a product, ensuring the needs of future
users will be considered. In addition to interviews, prototypes and
click dummies can be used in this phase. Agile projects might replace
the click dummies by runnable increments of the developed software.
After each release, the success can be evaluated by further user studies.

In methods for user studies, generative and evaluative methods
need to be distinguished [39]. The former will provide insights into
user needs and possible UX optimizations before even starting de-
velopment. They either start from a clean slate or from documents
and prototypes and work with potential later users of a software, or
people from the expected target demographic. Evaluative methods
focus on a finished UX design or even a finished software, evaluating
how well these are accepted by expected users or the established user
base. They can be used to evaluate the success of a software project,
or as the basis for a potential redesign or incremental improvement of
the user interface.

2.3 user interface concepts

In the following sections we describe some basic concepts of graphical
user interfaces that are used in PRE Workbench or the prototypes for
it.

2.3.1 Window Handling

For applications operating on any kind of document, there are several
well-established styles to handle the use case of working on multiple
documents at the same time [36]. For an overview, see Figure 2.

In a single file application, the software has no built-in support for
working on multiple documents, instead, it relies on the operation
system’s multi-tasking support. Therefore, the user just opens multiple
instances of the application to work on multiple documents. This



2.3 user interface concepts 5

Figure 2: Schematic illustrations of different window-handling concepts

reduces implementation complexity, because no special handling for
document switching needs to be implemented. It may come at the price
of worse user experience, because of a cluttered desktop. Furthermore,
sharing state between documents is harder with this approach.

Applications with the classic Multiple-Document Interface (MDI)
provide a main window, in which multiple documents can be opened
as overlapping child windows. The child windows are contained in the
main window such that the user cannott move them outside the main
window, and if the main window is moved, they are moved along.
Classic MDI support is built into UI frameworks such as Windows
Forms and Qt. However, it is not considered as user-friendly anymore,
and many applications (e.g. Microsoft Office) moved to other interface
styles. All documents are handled by the same application process,
making implementation more complex, but simplifying shared state
between documents.

More modern approaches provide a blend of better user experience
and running in a single process. One common approach in current ap-
plications such as all web browsers is the Tabbed-Document Interface
(TDI), and multi-windowed TDI. Here, only one document is shown at
the same time, and a tab bar at the top of the window allows the user
to switch between documents. This reduces clutter on the desktop,
but is easier to handle by the user than classic MDI. Multi-windowed
TDI allows the user to open several windows, all running in the same
process, and move tabs between them. This is especially useful on
systems with multiple monitors. A special case of TDI is used by most
Integrated Development Environments (IDEs). They implement a tiled
TDI, where users can place several tabs, containing documents or tool
windows, next to each other. However, tiles are automatically arranged
in a non-overlapping manner.

2.3.2 List-Detail Pattern

In a user interface following the list-detail pattern (Figure 3), a main
list view and a detail view are displayed next to each other. The main
list displays only the most important bits of information on each
entity, commonly in the form of a table where each row represents an
entity and each column a bit of information. When an entity from the
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Figure 3: Schematic illustration of list-detail pattern

main list is selected, the detailed information on the selected entity
is displayed in the detail view, often in a "Key: Value" format. If the
entity has a graphical representation, e.g. if the entity is a picture, this
can be displayed instead.

2.4 data structures for interval information

Our application needs to store metadata on ranges of bytes in a buffer.
Metadata includes annotations added by the user (colors and text
comments), parse results (name and value), and imported metadata
from other applications. The byte ranges are allowed to overlap. There
are many possible data structures to store this kind of data. The naive
approach would be a simple list of Range(start, end, metadata) ob-
jects (see Figure 4a). We started using this approach. However, for
painting the HexView display, we need to retrieve the relevant Range
objects for each painted byte (all objects where start <= byte index

<= end). If many Range objects are stored, retrieval is a performance
bottleneck, because we need to scan the whole list (O(n) time com-
plexity) for each painted byte.

A simple optimization would be an array the length of the buffer,
where each array element stores a list of references to the Range objects
relevant to this byte (see Figure 4b). This is very time efficient (O(1)
time complexity), but requires a lot of memory for larger files, and is
especially memory inefficient for large files with few annotations.

We therefore decided on an approach that compromises between
memory and access time. The buffer is divided into chunks of a fixed
number of bytes [60]. For each chunk, a list of references to Range

objects that have an overlap with the chunk is stored (see Figure 4c).
Therefore, to search for Range objects containing a particular byte, only
iterate over all Ranges in the chunk of that byte. Thus, the search time
complexity is O(c), where c is the chunk size.

There are more complex and more efficient data structures to store
intervals, for example interval trees [11] and nested containment
lists [2]. However, we found our chunked approach fast enough for
a lag-free GUI in regular use of the application. This approach is
implemented in the RangeList class of our application.
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(a) Naive approach: Lowest memory usage, highest runtime

(b) Cached approach: Highest memory usage, lowest runtime

(c) Chunked approach: Medium memory usage, medium runtime

Figure 4: Data structures for range information





3
R E L AT E D W O R K

In this chapter, we will discuss software tools for parsing well-known
protocols, describing binary protocols and viewing and annotating
arbitrary binary data. The last two categories are often found as fea-
tures of hex editors. Research papers covered in the following sections
include description languages for protocols which allow automatic
parser generation and fuzzing. In distinction to the main topic of
this thesis, we also give an overview of various automated reverse
engineering approaches.

3.1 protocol analysis software

The first step to analyze network traffic is capturing and recording it.
Often, the packet capture libraries libpcap [61] or Npcap [38] are used
to record network packets at the interface layer with support of the
operating system. If this is not possible due to missing permissions
or encryption, we can use proxy software (e.g. mitmproxy [12]) to
capture data streams at the transport, encryption or application layer,
or import data from vendor debugging tools (e.g. Bluetooth logs from
a phone). Another possibility are over-the-air sniffers for wireless
protocols (e.g. BTLEmap [23]) and logic analyzers (e.g. Saleae logic
analyzer [31]) for wired protocols. After capturing raw network traffic,
we usually need to extract the payload data from the surrounding
protocol stack. This problem is solved by multiple software tools which
can automatically parse and analyze many known protocols.

3.1.1 Wireshark

The most popular network protocol analysis software is Wireshark
[10], an open-source tool which combines raw network traffic capture
capabilities with a large number of dissector modules. It can capture
Ethernet, WLAN, USB, Bluetooth, and several other types of traffic.[37]
Captured data is usually displayed live, and can be stored and loaded
as PCAP files.

The main Graphical User Interface (GUI) is divided in three areas:
packet list, packet details (a protocol tree) and packet bytes (a hex
dump of the raw packet data). Upon selecting a row in the protocol
tree, the corresponding bytes are highlighted, and vice versa.

The protocol tree is built by dissectors, which can be implemented
in C or Lua in an imperative way. This gives maximum flexibility for
complex protocols, but makes the parsing code very verbose, even for

9



10 related work

simple protocols. Each dissector receives as its input the payload of
the underlying protocol. If the underlying protocol is a stream based
protocol which needs segment reassembly (e.g. Transmission Control
Protocol (TCP)), the dissector needs to handle incomplete packets and
request more input, if necessary.

When developing a C dissector, Wireshark needs to be recompiled,
leading to longer turn-around times. For Lua dissectors, and for the
Generic and Python dissectors described below, this is not necessary,
only a restart of Wireshark is required, making them easier and faster
to develop. However, runtime parsing performance is better with C
dissectors.

3.1.1.1 Generic Dissector

Generic Dissector [72] is a Wireshark plugin that allows the user to
write dissectors in a declarative language, similar to C structures.
They are parsed into internal data structures and can contain scripts,
which are interpreted during the dissection. Predefined decoders can
transform packet data before parsing, including Base64, Unicode and
Advanced Encryption Standard (AES) decoding.

Unlike with imperative dissectors, no special code for segment
reassembly is required, as this is handled seamlessly by the inter-
preter. However, it is not possible to implement protocols containing
streams needing reassembly, because sub protocols nested in a Generic
Dissector protocol have to occur in one continuous piece.

3.1.1.2 Pyreshark

Pyreshark [53] is a Wireshark plugin that enables the user to load
Python code into Wireshark, to implement dissectors or other plugins
in Python. Custom Python code can be executed to conditionally
parse data. It includes no support for using Wireshark’s reassembly
algorithm, so correctly implementing TCP based protocols is not
possible.

3.1.2 ScaPy

ScaPy [7] is a module for the Python programming language, which is
geared towards interactive packet manipulation and building custom
networking tools. Similar to Wireshark’s dissectors, it contains Packet
classes for many common network protocols. For simple protocols,
a declarative syntax is used, which allows the library to parse and
generate network packets from the same description. Special cases
can be handled with custom Field types or pre- and post-processing
Python code in the Packet class. It allows crafting and sending network
packets and capturing the replies, so it can be used for network
scanning, unit tests, fuzzing or other attacks.
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3.1.3 CANAPE

CANAPE [17] is an open-source network protocol analysis tool which
provides an Integrated Development Environment (IDE) for binary
network protocols. It is implemented as a C# GUI application and
therefore only runs on Microsoft Windows. It intercepts and manipu-
lates binary protocol data by providing a SOCKS proxy server, in a
similar way as web Application security testing tools (like Burp 1 or
Fiddler2) do for web requests by providing an HTTP proxy. This also
allows replaying of captured network traffic. The goal is to provide
a framework for developing parsers, fuzzers and proxies for com-
plex protocols with a minimal amount of custom code. Net graphs
(flowchart-like directed graphs) are used throughout the program:
Incoming data flows through transforming and parsing nodes, describ-
ing the steps required to parse a complex protocol. In some protocols,
a connection can be in different states (e.g. negotiation, authentication,
data transfer). These states, and the transitions in between, are also
represented as graphs. The parsers are either generated from a pro-
tocol description entered in a spreadsheet GUI, or implemented as
imperative C# snippets.

3.1.4 Universal Radio Hacker

Universal Radio Hacker [43] is an open-source protocol analysis tool
for low-level wireless protocols. It implements an interactive GUI for
collecting raw signals via Software Defined Radio (SDR), demodulat-
ing them into a bitstream, decoding messages, labelling protocol fields
and grouping messages by message type. Unlike the programs de-
scribed above, URH operates at the radio signal or bitstream level, not
at the byte level. It provides special features adapted to low-bandwidth
radio protocols as often used in smart home and IoT devices. For ex-
ample, it can auto-detect modulations like FSK and ASK, and decode
differential encoding and data whitening.

Compared to GNUradio [20], a very powerful open-source tool for
processing wireless signals, URH has fewer features but allows a much
more user-friendly workflow for examining common, simpler radio
protocols. In particular, the interactive configuration and visualization
allows for exploration of unknown protocols on the physical and
bitstream layer.

3.1.5 Saleae Logic

Saleae Logic 2 [31] is the accompanying software to the hardware
Saleae logic analyzers. Logic analyzers are be used to record over-the-

1 https://portswigger.net/burp

2 https://www.telerik.com/fiddler

https://portswigger.net/burp
https://www.telerik.com/fiddler
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wire protocol data inside devices. After recording the raw electrical
signals, Logic 2 allows the user to run so-called low-level and high-
level protocol analyzers on the signals. Low-level analyzers transform
the captured electrical signals into low-level binary data, e.g. into two
byte streams (receive and transmit) in the case of UART communica-
tion. High-level analyzers further transform the results of a low-level
analyzer, e.g. by parsing a higher level protocol layered on top of
the UART byte stream, producing a list of protocol frames. This can
be used to build a parser for a newly reverse engineered protocol,
displaying it’s results directly in the Logic 2 software. Analyzers are
built in Python, on top of an SDK provided by Saleae.

3.2 advanced hex editors

Investigating unknown proprietary protocols often includes looking
at the raw bytes of which a packet consists, usually displayed as a hex-
adecimal and ASCII representation next to each other ("hex dump").
Therefore, we also researched the features of hex editors which are
usually more advanced than the hex dump view of Wireshark. Inter-
esting features include the possibility to interpret the selected data as
various formats (integer, float, timestamp, color), calculate checksums
and hashes, display histograms of occurrences or compare two files.
Some hex editors can parse binary file formats using a format descrip-
tion in a proprietary syntax, or from a GUI. It can be edited on-the-fly
by the user, allowing an interactive exploration of a file format. In
Wireshark, the packet bytes hex viewer is linked to the packet tree,
therefore the dissectors are providing format descriptions in a similar,
yet less interactive way. In some editors, the user can interactively add
annotations, comments or bookmarks to the hex dump, enabling them
to directly record information gained about the file format. In Table 1,
we provide an overview of the most common features of hex editors
and some similar software.

3.2.1 010 Editor

010 Editor [59] is a commercial text and hex editor for Windows, Linux
and macOS. Format descriptions can be provided in a proprietary
scripting language called "Binary Templates". The syntax is similar to
C structs, but supports loops and conditionals, as well as scripts to
parse custom field formats. The Inspector interprets selected data as
various integer, floating point and timestamp formats. Multiple hash
and checksum algorithms can be calculated, and a histogram view
can visualize the number of occurrences of values in the file.
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Select Bytes ✓ ✓ ✓ ✓ - -

Data Inspector ✓ ✓ ✓ ✓ - -

Checksums ✓ ✓ ✓ ✓ - -

Hashes ✓ ✓ - ✓ - -

Histogram ✓ ✓ - ✓ ✓ -

Annotation - - (✓) 4 (✓) 3 (✓) 3 -

Generic Parser ✓1 ✓2 - ✓1 - ✓1,5

Packet Support - - - - ✓ ✓

1 text-based, 2 GUI-based, 3 bookmarks only, 4 colors only, 5 requires restart

Table 1: Overview of hex editor features

3.2.2 Hexinator

Hexinator [42] is a commercial hex editor for Windows and Linux.
The user can build format descriptions called "grammars" by selecting
bytes in the hex editor, or from a GUI based around a tree structure.
Grammars are stored in a proprietary XML format and can be applied
to other files using their "Universal Parsing Engine". Selected data
interpreted as various integer, floating point and color value formats
is shown in the Data Panel, and checksums and hashes thereof can be
displayed. It can also display a histogram of the entire file.

3.2.3 Hex-Works

Hex-Works [6] is an open-source online hex editor written in JavaScript,
in which the user can manually colorize ranges of a file, and apply
the color set to other files, allowing for easier comparison of similarly
structured files. The colorizations are applied statically by byte offset,
without any support for automatic repetitions or adaption to variable-
length areas. An Inspector is provided which shows the selection
interpreted as integer, and some simple checksums. The user can also
enter an arithmetic expression with variables for the selected data,
which is re-evaluated whenever the selection changes.
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3.2.4 ImHex

ImHex [70] is an open-source hex editor targeted at reverse engineers
and programmers. It is developed in C++ and uses a custom GUI
framework, ImGui. Using a custom C++-like description language, the
user can describe file formats to be parsed by the editor, displaying
the results as a tree view and highlighting fields directly in the hex
editor. It also provides features aimed at reverse engineering files,
like a disassembler, data analyzer based on magic numbers, byte
distributions and entropy, as well as search features for strings and
hex values.

3.2.5 Hobbits

Hobbits is an open-source "software platform for analyzing, process-
ing, and visualizing bits" [32]. It is not a classical hex editor, in that it
is centered around bitwise instead of byte-wise data presentation, and
does not allow direct editing of data. However, it can show hexadeci-
mal and ASCII views of imported data. Bitstreams can be imported
from files or over the network, and manipulated via so-called opera-
tors, keeping track of the intermediate steps of data manipulation in
a tree structure. Data can also be analyzed using plugins, e.g. search-
ing for bit strings or guessing possible frame lengths. In addition to
the common hex and ascii display, Hobbits provides graphical rep-
resentations, e.g. raster views, where each pixel represents a bit or
byte.

3.3 data format description and parser generation

In many network analysis tools (e.g. Wireshark [10]) and Intrusion
Detection Systems (IDSs) (e.g. Snort [56], Zeek [63]), protocol ana-
lyzers (parsers) are handwritten, low-level C code. This is described
as a lack of abstraction [40], which makes bugs hard to detect, and
security vulnerabilities more likely. In other fields where parsers are
required, like parsing of programming languages, it is very common
to use parser generators (e.g. Yacc [62] or Bison [8]), which generate
parsers from high-level grammars. Transferring this method to net-
work protocol parsing, and binary parsing in general, is the topic of
various research papers and open-source projects. Some of these we
will present below, focusing on ones which are used in real-world
products or have interesting properties.

3.3.1 XDR and ASN.1

XDR (External Data Representation) [14] is a standard for describing
and serializing data, especially network protocols. It defines a common
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serialization format for primitive types like numbers, strings and lists,
as well as a C-like description language for defining complex data
types like structs and unions.

The ASN.1 (Abstract Syntax Notation One) standard provides
similar features, but is more complex and more flexible. It provides
a larger number of primitive types (e.g. Object IDs, multiple types
of strings, sets), as well as multiple serialization formats, which are
designed for different objectives, e.g. an extremely compact binary rep-
resentation (Packed Encoding Rules, defined as a bitstream), fast and
flexible parsing (Basic Encoding Rules, defined as a stream of bytes),
or human-readability (XML Encoding Rules, a text-based format).

Both standards are relevant because they have been around since the
90s, and have therefore influenced many newer serialization standards
(e.g. Protobuf [44], Apache Thrift [4], FlatBuffers [16]) in terms of
the available primitive and complex data types, and the specification
languages. These newer standards are structurally so similar that we
do not further address them here.

The aforementioned standards are useful for defining new protocols,
and are used as the basis of several standard protocols and file formats.
From a description, serializers and deserializers (parsers) can be auto-
matically generated for many programming languages. However, the
serialization formats are not sufficiently adaptable to describe most
existing binary data.

3.3.2 Packet Types

McCann and Chandra [33] mention another reason why, even for new
protocols, bespoke serialization formats are created instead of using
standardized ones, which is the requirement to keep overhead low by
packing data "as tightly as possible". Using an excerpt from the Linux
kernel firewall code as an example, they explain that traditional code
for interpreting packets is verbose and error-prone. To facilitate the
quick and correct implementation of such parsers, they present the
Packet Types packet specification language. It supports some common
idioms of network protocols, which cannot be implemented with
simple C structures, namely length-prefixed fields, clean definition of
protocol layers, endianness of numeric fields, and byte alignment of
structure fields.

3.3.3 BinPAC

Pang et al. developed BinPAC [40], a framework to generate parsers
for network protocols from a high-level declarative specification. They
state that it is a problem that even for very complex protocols, an-
alyzers are often written as low-level code with lacking abstraction,
making programming errors likely and hard to notice. These hand-
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written parsers are often implemented in memory-unsafe languages
like C, and directly interface with untrusted input from the network,
errors are likely to result in security vulnerabilities. Furthermore, such
parsers are often not reusable in other applications, because they are
tightly coupled with their environment.

They compare this style of development to parsers for programming
languages, which are usually automatically generated from declarative
specifications of the language. Parser generators (e.g. yacc) from that
domain are not easily applicable to network protocols, because some
common patterns in network protocols are very unusual in program-
ming languages. This includes length-prefixed data fields, and cases
where parsing one field depends on data from another, non-adjacent
field. These patterns are hard or impossible to describe with context-
free grammars, the usual way to describe a programming language’s
syntax using recursive replacement rules.

The authors implement their own parser generator, which compiles
a high-level description language to low-level parsers in C++, and
demonstrate protocol parsers for multiple complex protocols (e.g.
HTTP, DNS, SMB). They integrate these parsers into the Zeek IDS
project, which now maintains the BinPAC code base, but the generated
C++ code can also be used in other programs.

3.3.4 Spicy

Sommer et al. [58] implemented HILTI, a platform for network traf-
fic analysis, consisting of an abstract machine model (essentially a
programming language, which itself is a compilation target) with an
instruction set optimized for networking applications, and a matching
optimizing compiler toolchain. One of their evaluation applications is
BinPAC++, a modification of BinPAC which generates code for their
intermediate language.

Later on, they present the Spicy framework [57] as a successor,
with a generalized specification language that also handles semantics,
and an API for Deep Packet Inspection (DPI) applications. Unlike
BinPAC, it contains a full programming language for handling protocol
state and logic, making inline C++ code unnecessary. The authors
implemented prototypes of integrations in Wireshark, Zeek and an
HTTP proxy, which however were not added to the upstream projects.
It also supports the reverse use case, assembling wire format from the
specification. The implementations of HILTI and Spicy are published3

under the BSD license.

3 https://github.com/zeek/spicy/

https://github.com/zeek/spicy/


3.4 automated protocol reverse engineering 17

3.3.5 KaiTai struct

KaiTai struct [27] is a parser generation framework for binary data
structures, consisting of a YAML-based specification language and
parser generators for many target languages. It is mainly aimed at
parsing files, but can be applied to PCAP files and network packets as
well.

3.4 automated protocol reverse engineering

Kleber, Maile, and Kargl [28] define two major ways of conducting Pro-
tocol Reverse Engineering (PRE): Entity analysis uses regular software
reverse engineering methods on an implementation of the protocol.
This is a useful approach if such software is accessible to the reverse
engineer, which may not be the case for embedded devices, online
services or heavily obfuscated software. Entity analysis or hybrid
methods are the only way to reverse engineer a protocol if strong
encryption is used to protect communications. In trace analysis, only
the traffic between entities is analyzed to infer the protocol. Static
Trace Analysis (STA), on which the authors focus in their detailed
survey, requires only passive listening capabilities on the communica-
tion medium, but no manipulation of an end entity. Offline analysis
of previously recorded traces is possible, making it reproducible and
allowing for usage of non-real-time algorithms. Dynamic traffic analy-
sis additionally stimulates the entity by injecting packets or interacting
with e.g. a device’s user interface.

Li and Chen [30] categorize similarly in network-based (trace anal-
ysis), program-based (entity analysis) and hybrid (a combination of
both) PRE methods. They present short overviews of select approaches
of each category.

In this section, we also focus on trace analysis, as the focus of this
thesis is on interpreting network traces.

3.4.1 Protocol Informatics

Beddoe [5] apply Bioinformatics algorithms to the protocol analysis
domain. Sequence alignment is usually applied to DNA sequences,
looking for similarities to find out which parts of DNA relate to shared
properties of the organism. In this paper, captured network packets
are aligned, using byte sequences instead of amino acid sequences.
After aligning two packets, identical ranges are marked as keywords,
changed ranges of same length as fixed-length fields, and gaps are
interpreted as variable-length fields. The result can be represented
as a consensus sequence: a new sequence where the identical ranges
are copied from the aligned sequences and variables are replaced by
placeholders.
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The Needleman-Wunsch algorithm is used to find optimal align-
ments. Similarity matrices, which assign a similarity value to each
possible pair of data values, are an important component to optimize
alignment, and need to be adapted to the problem at hand. The au-
thors present example matrices for text-based protocols, defining that
ASCII chars are more likely to change to other ASCII chars in another
packet, than to non-ascii bytes.

They analyze the detected columns (variables) using several tech-
niques, for example offset comparison, to detect sequential numbers
(where the number increases with each packet by an equal or similar
offset), and mutation rate, to detect pseudo-random numbers like
checksums (which have a high mutation rate).

The examples always use text protocols, but the authors claim the
technique works on binary protocols as well.

The authors of the paper mention some possible next steps to
explore: They propose to present the resulting data in an intuitive
way to allow improved human estimation and understanding. This
could be achieved by displaying data in matching colors, and by other
interface design approaches. On the other hand, they acknowledge
that the process can never be fully automated if accuracy is in mind.
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D E S I G N

For designing a software product, we first need to clarify the goals. To
do this, we conducted user interviews, which are described in the first
section. From that, we distilled conclusions and model scenarios in
which the software could be used. We describe the generic workflow of
a protocol reverse engineer shared by these scenarios. Furthermore, we
study the characteristics of typical protocols encountered by potential
users.

Derived from these we define basic object types we see throughout
our application, a definition language which can describe the protocols
we studied, and display and interaction modes used in the application.

4.1 user interviews

To kick of the design process, we used user interviews, a generative
method of user studies as described in Section 2.2. We recruited reverse
engineers with different levels of expertise, which could be potential
users for our application, to answer our questions. The questionnaire
used to survey these participants and the mock-ups shown to them
are attached as Section A.1. In this section, we summarize the insights
we gained from this first phase, the individual user interviews. In
Chapter 6, we describe the following, evaluative phases of our user
studies. We used these to further guide the development process and
evaluate the project in the end.

4.1.1 Interviewee 1

The interviewee analyzed a proprietary binary protocol in their Bache-
lor’s thesis, and is currently working as a student assistant on other
protocol reverse engineering tasks.

analyzed protocols The protocol is used for internal commu-
nications between components of a smartphone. As the protocol was
not publicly described before, the goals were to find out the protocol
structure, publish it as a paper and provide a Wireshark dissector to
facilitate future research. It could be intercepted by enabling a debug
mode of the operating system and reading the protocol frames from
the system log. It was also possible to inject modified frames into the
system for further analysis and fuzzing. The basic structure of the
protocol was simple, consisting of a fixed-length header followed by
Type-Length-Value (TLV) fields. However, there was a large number
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of TLV types containing individual data structures. No cryptography
or deliberate obfuscation was used, however, the header was hard
to analyze, because it used packed, intermingled bit fields spanning
several bytes.

workflow To access protocol data, they implemented a script that
reads the system log, parses the log lines containing hexadecimal
representations of packets from it, and pipes them into Wireshark.
This gave them a live view of the traffic. No custom code on the device
is needed because the log can be accessed using developer tools on
their computer.

Three main ways of interpreting the basic structure of the unknown
protocol bytes were described by the interviewee. First, they tried to
interpret packet contents based on known external context. One exam-
ple is a user interaction, which is known to cause packet containing
some known data, like sending an SMS where the SMS contents are
known.

Second, differences and similarities between groups of packets were
examined to identify fields with static (e.g. packet type) or dynamic
(e.g. sequence number) contents. Third, they used context provided by
the program library under test itself, in this case lines in the system
log, that contained parsed field contents from the adjacent packets.
They also injected packets with flipped single bits to determine field
boundaries by watching which field contents in the log changes.

As the binary of the code handling the packets on the main processor
side was accessible to the researcher, they used static analysis of the
binary to gather further information of the data structure inside the
individual TLV contents.

difficulties They decided to implement a Lua dissector for Wire-
shark, because the protocol does not have high throughput and not
performance sensitive, so the much higher complexity of implement-
ing a C dissector is not justified.

While implementing the custom dissector, they noticed that parsed
fields could only be annotated in Wireshark as full bytes, not indi-
vidual bits – however, some fields consisted of single bits fragmented
over multiple bytes (see example in Figure 5).

1 01000100 10111101

2 XX...... ..XXXXXX Sequence No. = 01111101

3 ....XXXX XX...... Frame Type = 010010

4 ..XX.... ........ Reserved = 00

5

Figure 5: Example of fragmented bit field
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Using fully automated protocol analysis tools was not successful,
because they could not handle the fragmented bit fields.

use cases The interviewee reported various use cases, where sup-
port by a graphical tool would be beneficial to their workflow.

First, when correlating unknown packets to contextual information,
it would be useful to integrate log outputs and manual annotations (e.g.
of user interactions) into the packet list, or into a separate view which
is linked to the packet list. Also, a way to record many short packet
traces, each annotated with the information which user interaction
lead to these packets was deemed helpful.

Second, they reported using a word processor to annotate hex
dumps of packets, whereas a hex editor with good annotation and
comment features would be a helpful tool.

Third, a graphical diff tool to view the differences between two
packets selected from a list of packets would have been very useful
for them when trying to find structures by comparing packets. Also, a
way to directly annotate identical ranges as fields might be helpful. It
would be necessary to manually select the packets to compare, because
often, consecutive packets would be of completely different types (e.g.
request and response), therefore, comparison would not yield useful
results.

Fourth, piping data from a custom script is considered the most
important way to import data. This provides the highest flexibility for
unforeseen data sources.

A powerful packet filter, like the feature available in Wireshark, was
seen as very important. Especially, filtering on the newly discovered
and annotated could be helpful, for example to verify assumptions
about possible field contents.

4.1.2 Interviewee 2

The respondent works as a PhD student and reverse engineered vari-
ous protocols, including protocols of Bluetooth tracking devices, while
working on their thesis. They also wrote their Master’s thesis in the
area. Most of their work is on device-specific over-the-air protocols,
rarely on TCP/IP based protocols, but usually not on device-internal
physical communication.

Their first goal of reverse engineering a protocol is usually to docu-
ment its structure and publish it as a paper. Also, knowing the protocol
structure is helpful for more directed fuzzing, by giving an idea which
fields might be more vulnerable to incorrect input. This helps with the
second goal of finding potential security vulnerabilities in the design
or implementation of a protocol.
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analyzed protocols In their Master’s thesis, they analyzed
vendor-specific network and Bluetooth protocols used for locally com-
municating between a smartphone and notebook. One of the protocols
was based on Bluetooth Low Energy (BLE) advertisements with pro-
prietary manufacturer data. It contained some unencrypted fields, and
a hashed app identifier. They needed to understand the binary data
format to conduct further security research on this communication
interface.

Common elements they often see in protocols are TLVs, as well as
structured data formats like MessagePack [50] and ProtoBuf [44]. In
formats like ProtoBuf, rudimentary structure information is provided
in the data. They can still be hard to decode without the protocol
definition, which can sometimes be retrieved from the application
binary, if available.

Also very common is a packet type near the start, determining
the following data structure. Often, request and response types are
defined, sometimes, a fixed sequence of packet types is expected by the
implementation. Other common elements include sequence numbers,
and encryption meta data like Initialization Vectors (IVs).

They did not encounter deliberately obfuscated protocols or data
formats yet. Encrypted protocols are quite common. To deal with these,
they usually hook into the software to either extract the cryptographic
key or the unencrypted raw data. This is only possible with access to
the device, so a debugger can be attached to the process.

They once analyzed a TCP/IP based protocol for device-to-device
communication with custom encryption, however, focus mostly on
lower level protocols.

workflow Most of the analyzed protocols are not based on stan-
dard network protocols, where one can simply record a trace with
Wireshark and have the lower layer protocols dissected automatically.
Instead, they are e.g. radio protocols with standard physical layer, but
custom MAC layers. Therefore, only the packet boundaries are known,
and all bytes inside a packet must be individually reverse engineered.
This makes it more difficult to load the data into Wireshark, because
no predefined dissector can be used. They sometimes write custom
dissectors in Lua, which is efficient to create due to its short and
simple syntax. However, they found it difficult to correctly integrate it
in Wireshark.

They reported using a hex editor with basic annotation features[3],
however, it is unable to save these annotations over multiple sessions.
The editor is mostly used for viewing, searching and annotation, and
only sometimes for actually modifying it. They either export single
packets from Wireshark into the editor, or sometimes even load the
complete PCAP file into it.
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For filtering and annotating log files, they wrote a custom GUI tool.
It provides syntax highlighting of common log formats and highlights
rows to which annotations were added.

use cases The most important use case would be capturing ideas
and insights directly in the tool. This could take the form of attach-
ing names and notes to byte ranges, highlighting with colors, and
transferring these annotations to other packets of the same protocol.

Another use case is to try running various decoders on a packet
or a byte range. This includes common encodings like MsgPack or
ProtoBuf, as well as encryption methods like AES (with provided
keys). One way to implement this in a general way would be a feature
to run custom Python scripts on data.

They also proposed to generate Lua dissectors, even exporting just
the annotations from a single packet as fields in the dissector might
be very helpful.

In response to being shown this feature in the mockup, they also
agreed that selection heuristics in the hex view (e.g. for detecting
length fields close to the selected range) could be useful.

They stated that their preferred GUI layout is placing all elements
in a single window, organized by a tabbed interface.

For importing data, they highlighted PCAP files as their single
most common format. When recording packets, framing and timing
information should usually be included, and PCAP is a common form
to store this information. Raw hex dump or binary imports would
only be useful for importing non packet based data, like custom data
files.

4.1.3 Interviewee 3

The interviewee works as a student assistant, reverse engineering
protocols and file formats mostly related to mobile and embedded
devices. They often work on low-level hardware interfaces.

analyzed protocols All protocols and file formats the intervie-
wee reverse engineered so far are binary, neither encrypted nor obfus-
cated. They often contained list structures and length-prefixed data.
The protocols were often device-internal communications, recorded
from Universal Asynchronous Receiver / Transmitter (UART) or Se-
rial Peripheral Interface (SPI) ports, or wireless communications. File
formats were crash dumps and configurations extracted from flash
memory or received over UART. They usually neither have access to
the executable nor can they attach a debugger, because they mostly
analyze closed embedded devices.
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workflow They gained access to raw protocol data at the physical
layer, e.g. connecting a logic analyzer to the device under test, or using
a Software Defined Radio (SDR) to sniff over-the-air traffic. After that,
they exported the data as binary, or an intermediate format produced
by the sniffing software which was in turn converted to a binary. They
reported using a very basic hex editor[34] to look at binary files, as
well as a word processor to annotate hex dumps with colors, notes,
indentations and line breaks.

For one protocol, they wrote a documentation of the format, so that
another researcher was able to implement a Wireshark dissector.

For files, they usually write a simple parser script in Python which
loads the binary and outputs parsed information as human-readable
text. They did not implement Wireshark dissectors in that case because
Wireshark is structured around network traffic.

use cases The interviewee explained various kinds of annotations
they would like to use on a hex dump. First, they need to visually
split up a file into sections, by introducing white space and a optional
comment between them. They would also like to create a hierarchy
of sections, e.g. by using different font sizes for the heading, or in-
dentation. Second, simple annotations on byte ranges like colors and
comments were seen as useful.

For UART data, it would be useful to import CSV files consisting
of timestamps and bytes. They could be split into sections by placing
section headers whenever a minimum time threshold is met between
two bytes.

They recommended a feature to transfer a set of annotations to
another file, optionally with a variable offset, to check whether it
matches the same format.

It was suggested that for analyzing unknown structures, they might
want to run external tools on a file, e.g. strings or binwalk. Another
suggestion was automated scanning for timestamps. Also, they pro-
posed a feature to automatically apply selected Wireshark dissectors
on a file or selected byte range, to check if it matches a known protocol.

They are interested in an export function which transforms an
annotation set into a Python script which can parse a file in the
annotated format.

4.1.4 Interviewee 4

In their position as a postdoctoral researcher, the interviewee reverse
engineers protocols and software as their own work or as a preliminary
analysis before assigning them as thesis topics to supervised students.
The goals of the preliminary analyses are to estimate the potential
impact, the time required and to determine if there are starting points
for analysis and modification.
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Basic goals include determining how a protocol works, investigating
its security, and developing compatible software. The description of
how a protocol works, possibly combined with details about the data
structures or a dissector implementation, may already be published as
a paper in the case of proprietary protocols. For a structured security
analysis, a threat model must first be developed in order to then
identify critical points in the protocol process and critical data that
must not be leaked or modified. Fuzzing can then be used on the one
hand to find attack points, but also to develop a deeper understanding
of the protocol.

analyzed protocols The researcher usually examines internal
protocols between components of a device, such as between the oper-
ating system and Bluetooth chip of a smartphone. Such protocols are
binary encoded, usually not encrypted or obfuscated, but occasionally
contain checksums. In some cases, the packet boundaries are unclear,
which complicates converting dumps to a PCAP file.

Protocols are usually implemented in more than one place, often in
different programming languages or environments, e.g. in a daemon
process in the operating system on the main processor, and in the
firmware of a peripheral chip. Therefore, it may be necessary to reverse
engineer more than one implementation. For that purpose, they use
dissassemblers like IDA Pro[25] and Ghidra[18].

workflow Common starting points for analysis are unencrypted
parts of a protocol, strings found in binaries and firmware, and ways
to inject modified packets.

For recording protocol traces, they usually have to develop their
own ad-hoc tools, since ready-made tools like tcpdump or Wireshark
do not work for these cases. Therefore, if the analysed software does
not provide builtin debug features to log raw protocol data, either
a hook has to be injected, e.g. with Frida[48], firmware has to be
modified, or data needs to be intercepted at the physical layer.

These ad-hoc tools will either output raw byte streams or a list
of raw packet bytes. Communication between the device under test
and the researchers machine is usually already implemented in the
utilized software like Frida or XCode. If raw byte streams are recorded,
packet boundaries need to be determined afterwards. Because timing
information can be obscured by buffering, it is often not possible to
determine packet boundaries by transmission pauses. Therefore, the
researcher often uses visual correlation by viewing a stream in hex
format in a text editor, trying to align bytes by inserting line breaks
manually or with search and replace.

To correlate similar packet contents, they insert hex dumps of mul-
tiple packets of the same type into a text editor, to use common
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text editing features like search, replace, insertion of line breaks and
highlighting of identical text on them.

use cases Since the researcher often has to work with the output
of ad hoc tools, they would welcome import functions for raw data.
This includes both raw binary files that still need to be split into frames
and directories with many raw binary files to be viewed as a list of
packets.

If available, timing information can be used to correlate packets to
e.g. syslog entries. To do this, you would have to save a recording with
timestamps in order to then automatically jump to the appropriate
places in the syslog.

Different tools use different formats to represent binary data as
hexadecimal string, so it would be useful to be able to import and
export data from files or clipboard in multiple formats (e.g. with or
without 0x prefixes).

Specialized search functions that automatically search for the same
value in multiple encodings would be helpful, e.g. for a certain number
as big endian and little endian integers, or a duration in minutes,
seconds and nanoseconds.

Since it is often necessary to hand over the project, it is important
that annotations can be easily passed on to other people, e.g. by
exporting them to a more common format. They might also want
to create a Wireshark dissector for a protocol, e.g. by automatically
exporting annotations and protocol definitions as a basic Wireshark
dissector which can then be manually refined.

As they already work with a large number of other programs at
the same time, the software should not open unnecessarily many
individual windows. A tabbed window interface is preferred.

4.1.5 Conclusion

From the user interviews, we can identify both common goals of the
researchers, and common features of the protocols studied. In addition,
we can summarize which software features are helpful according to
the interviewees in order to achieve these goals more easily in the
examined protocols.

Common to all interviewees is the goal of reverse engineering the
structure of proprietary protocols and subsequently publishing them,
usually in scientific publications and as open-source tooling.

The protocols studied use binary transmission formats, not text-
based ones, often built in TLV format or compact, fixed data structures.
Artificial obfuscation of the data is hardly to be found, in some cases,
however, historically-grown structures can make them equally hard to
understand. Some of the protocols are encrypted, forcing researchers
to extract keys before being able to analyze the payloads.
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For the graphical user interface, a tab-based interface was generally
preferred over a single-file interface or a multi-window interface.

A feature all participants deemed very helpful is a hex editor with
advanced annotation features, usable to view not only the contents of
a single file, but also of one or more packets from a protocol dump.
Requested annotation features include highlighting byte ranges with
colors, placing short notes directly beneath a byte range or displayed
as a tool tip, to mark potential data fields. There should be an easy
way to interpret such selected bytes as different binary data types, e.g.
numbers and timestamps. A further annotation feature is splitting the
data visually into multiple sections to represent larger data structures,
potentially with a hierarchical view for tree-like data. The annotations
should also be able to be saved and transferred to other data sets.

Relevant data import formats are raw binary files, packet-based file
formats (PCAP, reading a folder with raw data files), data transfer via
standard output (pipe) from a script, and timestamped UART data.

Since protocols often have unpredictable peculiarities that cannot
be foreseen in the development of this software, extensibility is a key
feature. For this reason, it should be possible to integrate external tools
and scripts. These should be able to run on single packets, multiple
packets and selected byte ranges.

To infer the meaning of packets from context, features are requested
to correlate log traces based on timing with log files or timestamped
manual notes. This could be achieved by a log display with synchro-
nized scrolling, or by interleaved display of log and packets.

Export functions are required to further use the results outside the
software. Of particular interest are the export of annotations as parser
code, e.g. as Wireshark dissector or as Python script, which prints a
human-readable version of parsed data.

4.2 model scenarios

In this section, we present selected model scenarios of reverse en-
gineering protocols. One the one hand, we describe the real-world
protocols serving as basis of the scenarios. On the other hand, we
pick out some facets of these protocols to explain why they are well-
suited for demonstrating features or justifying design decisions of
the application. After that, in Section 4.3, we will use them to explain
the workflow from data acquisition, over preparation and import, to
annotating the packets and finally creating and validating a grammar.

4.2.1 ARIstoteles

The Apple Remote Invocation (ARI) protocol is used for device-
internal communication in iOS devices between main processor and
baseband chip. It was reverse engineered and publicly described by
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Figure 6: Parsed ARI frame in PRE Workbench

Kröll et al. [29]. They captured traces by reading out system logfiles,
and injected packets by hooking into a daemon process and calling
methods there. No lower networking layer is present in this case, so
analysis is performed directly on the extracted protocol frames.

The protocol itself has a simple base structure, each frame starts
with a fixed-length header, followed by a varying number of TLV
blocks (see Figure 6). The frame header as well as the TLV headers
have a more intricate structure, because they contain packed fields of
varying lengths in bits, which are not aligned to byte boundaries, and
which are then converted to little-endian byte order. A large number
of different types are defined, therefore Kröll et al. [29] partially
automated the process to generate dissectors for the TLV values from
the disassembled driver software.

We will focus on ingesting the sample protocol traces and frames
the authors published, and parsing the header structures. We skip the
actual TLV values, because due to their large number, they are better
suited to an automated approach.

The sample data is present in two different formats: as PCAP files
with a custom link type, and as raw binary files, each directly contain-
ing the ARI frames without any lower layer.

4.2.2 Bluetooth Smart Lock

The eqiva Smartlock is a battery-powered device which can be installed
on the inside of a front door. It allows the user to lock and unlock the
door over Bluetooth via a smartphone app. We analyzed its security
and communication protocols previously [67]. To this end, we sniffed
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Figure 7: eqiva Smartlock architecture

data on multiple transports, and we had multiple custom protocol
layers to reverse engineer. An overview of the architecture is visualized
in Figure 7.

The lock hardware consists of two different microcontrollers, a
Bluetooth SOC by Broadcom and a 8-bit microcontroller by ST. In the
Bluetooth SOC, an SDK provided by Broadcom implements the BLE
protocol, and a custom application developed by eqiva implements a
custom segmentation protocol layer, which allows to transport longer
data frames in the short payload fields of BLE Generic ATTribute
Profile (GATT) messages. This Bluetooth SOC in turn communicates
over UART to the 8-bit microcontroller, which handles the actual
application-level protocol, and also controls the actual motor which
locks and unlocks the door. The UART communication use a simple,
custom UART framing protocol layer.

Therefore, the three custom protocols we have to deal with are UART
framing, BLE segmentation and the application protocol. Over-the-air,
we see application protocol frames, wrapped in BLE segmentation,
transported over BLE GATT messages. On UART, we see application
protocol frames, wrapped in UART framing.

4.3 workflow

Based on the user interviews and the model scenarios, we describe
below the components of a reverse engineering workflow that can be
implemented with PRE Workbench.

4.3.1 Raw Data Acquisition

As seen with the ARI protocol, data could be present in raw binary
files, and in PCAP files. In the case of the Smart Lock protocol, we
also need to import Bluetooth traces, and Comma-Separated Values
(CSV) files containing data from a serial port dump. We also want
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to handle network data, either as live captures using the Wireshark
Command-Line Interface (CLI), or by pasting TCP stream data from
Wireshark from the clipboard.

We need to handle a variety of data acquisition and import methods,
producing either single ByteBuffers or lists thereof. Therefore, we
propose the concept of a DataSource, which the user can parameterize
and run. All data sources we implemented, and the ways to implement
custom data sources are described in Section 5.2.

4.3.2 Data Extraction and Preparation

In some cases users need to further prepare imported data, for example
splitting data into frames, decrypting or decoding data according
to some protocol-specific rules. As these are hard to foresee and
implement comprehensively, we allow users to run macros on data
objects, so they can implement these rules in short Python programs.

4.3.3 Data Display

Once the data is successfully imported, researchers often want to
explore them interactively. In the case of protocol traces, a list view is
initially provided for this purpose, which displays the raw data and
any metadata of the packets. One or more packets can then be selected
from this list and get displayed in a detailed view as a HexView. In the
case of individual binary files, the HexView display is loaded directly.

packet list The list view allows not only to select packets for the
detailed view, but also to run macros on the packets, filter based on
expressions, mark packets for future reference, as well as to customize
the columns displayed.

hexview The HexView component is the key component of the
application. It displays the hexadecimal and ASCII representation of
the binary payload of packets or files, in a format commonly described
as a hexdump (see Figure 8a). Furthermore, the HexView allows the
researcher to explore the data in a variety of ways:

Upon selection of a byte range, several heuristic detection methods
are run in the background, to highlight matching information in the
vicinity of the selected data. For example, if a likely length field is
found next to the selection, it will be highlighted. New heuristics can
be implemented as simple Python functions, either directly in the
application code, or in a plugin.

A data inspector panel shows interpretations of selected bytes in
various formats such as integers, floating point numbers, timestamps,
colors and IP addresses.
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(a) A plain hexdump

(b) An annotated hexdump

Figure 8: Screenshots of the HexView component

interactive annotation The HexView also aids in document-
ing insights the researcher gained into the protocol already. Bytes and
byte ranges can be annotated in different colors, and with textual com-
ments (see Figure 8b). These annotations can be displayed on multiple
packets simultanously, allowing the researcher to immediately detect
pattern matches or mismatches.

4.3.4 Interactive Dissector Development

We want to give the user the possibility to specify the protocol gram-
mar by editing it as a textual representation as well as by highlighting
bytes in a Graphical User Interface (GUI). To this end, we need a
textual representation, which should be easy to edit by the user, an in-
ternal structure, which the GUI can work on, as well as the possibility
to convert between them in both directions. A textual representation
based on a general-purpose programming language is to expressive,
allowing the user to type in constructs which the GUI could not han-
dle. Basing it on a general-purpose structured language like XML or
JSON was deemed not comfortable enough to edit by hand. For that
reason, we designed a custom language for grammar specification in
a roughly C-like syntax.

user interface The user interface should give the user multiple
ways to work with protocol traces and grammar definitions. We pro-
vide a code editor to directly work on the textual representation. This
is especially useful for quickly typing in known elements of the proto-
col, as well as for more complex structural changes which are easy by
copy-and-pasting code snippets, but more difficult to represent in the
other views. Furthermore, the user can highlight bytes in the HexView
and use the ClickGrammar feature to assign them a name and data type,
adding them as structure fields in the grammar definition. Finally, a
tree view displays the parse result of the grammar definitions in a tree
structure. In the tree view, the user can also edit the structure fields
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using the GUI, to change their visual representation (e.g. background
color). All these views are synchronized in all directions, e.g. changes
made in the tree view automatically propagate to the code.

validation To validate the produced grammar definitions against
the protocol traces, we provide multiple features. First, a whole trace
file can be parsed using a grammar definition. If any parsing errors
occur, they are printed in a log output, alerting the researcher to
possible mistakes in the grammar definition. Second, assertions of
field values can be placed in the definition, so that a parse error is
raised if it does not match. Finally, a packet list can be searched for
packets matching a specific expression, allowing to find packets which
contain unexpected values.

dissector export As researchers explained in the interviews,
they want to publish their results in a format useful to other re-
searchers. While PRE Workbench grammar definitions are a concise
form to describe a protocol, formats compatible with more popular
applications are better suited for reuse. Therefore, we provide a feature
to convert said definitions into dissector code compatible with the
Wireshark protocol analyzer [10].

4.3.5 Macros

Because protocols and data formats can be arbitrarily complex, re-
searchers often need to write custom code to pre-process data. Macros
allow them to do this without having to leave PRE Workbench. They
can be used to perform actions on the object types explained in Sec-
tion 4.4, either consuming or producing one of these objects, or both,
to transform data. They can also perform completely custom actions
without interacting with any core application objects.

4.4 main data structures

In this section, we describe the main representations of data in the
application, which are represented as classes in the implementation
(more details in Section 5.1). These are also found as essential elements
in the user interface.

One of the core objects of PRE Workbench is the byte buffer. A
byte buffer contains a sequence of zero or more bytes (numeric values
between zero and 255), and accompanying metadata. Metadata can
either apply to the buffer as a whole, or to byte ranges inside the
buffer. Annotations, section titles and parsed field values are stored as
range-based metadata in the byte buffer object. Whole-buffer metadata
can include a grammar definition name, annotation set name, as well
as information provided by the data source, e.g. a packet timestamp
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or direction. Byte buffers are either handled individually or as part of
a byte buffer list. When a binary file is opened in the application, it is
loaded into a byte buffer, and displayed individually.

The byte buffer list is another core object. It holds an ordered list
of byte buffers, accompanied by metadata belonging to the whole list.
When a PCAP file is loaded, the packets are loaded into individual
byte buffers, which are bundled in a byte buffer list. In this case,
individual byte buffers store packet-level metadata like the capture
timestamp, while the list stores file-level metadata like interface config-
uration. A byte buffer list is displayed using a list-detail interface (see
Section 2.3.2), with a list of packets, where the columns can display
packet metadata, fields and payload, and a detail view which displays
the payload of the selected packet in a HexView.

A data source produces one of the objects mentioned above, given
some input parameters. For example, the PCAP file data source requires
a file name as input parameter, and generates a byte buffer list con-
taining all packets from the PCAP file. Data sources can be defined in
the application source code, in plugins or in user-defined macros. This
allows flexible import of the wide variety of input data that researchers
work with.

Range objects represent a consecutive range of bytes in a specific
byte buffer and are used in many places throughout the application.
For example, the current selection in a HexView is represented by a
range, with its buffer, start offset and end offset properties. Furthermore,
range objects can store additional metadata like a field name or a
background color, and are used to annotate byte ranges in a byte
buffer.

4.5 graphical user interface

As we want to develop a GUI application, we have to decide on the
general environment to develop in, which frameworks to use, and
which paradigms to use for window and file handling.

4.5.1 Environment and Frameworks

The environment includes which operating systems the application
should work on, whether it is a desktop application, a web application
running a local or online server, or a mobile app. Due to the nature of
the tasks performed using our software, a mobile app was out of the
question, and based on the fact that we want to support local network
sniffing, some out-of-browser component on the user’s machine is re-
quired. Most users we interviewed work on Linux or macOS operating
systems, so a cross-platform application seemed appropriate.

The available frameworks depend on the environment. For cross-
platform native desktop applications, comprehensive frameworks like
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Qt [47] or wxWidgets [73] are available. Another possibility for cross-
platform desktop applications are frameworks based on JavaScript
and web browser technology, like Electron [15]. Finally, a local web
application could be developed, by creating a server software running
directly on the user’s machine, and a frontend running in the web
browser. The frontend could use any common web framework, like
Sencha Ext JS [52], or a custom combination of web components.

During the design phase, we evaluated multiple GUI environments
and frameworks. We developed prototypes of different extents in each
case. We evaluated developing an Electron application, however, we
wanted to use a Python backend because we wanted to interface with
ScaPy at that point. Therefore, we evaluated using a locally running
backend implemented in Python or Node.js and a web application
running in the browser as frontend. To this end, we tried out the
Sencha Ext JS framework and the GoldenLayout dock panel toolkit.

The first more extensive prototype (Figure 9) was implemented
as a web application in TypeScript, using the GoldenLayout layout
manager [21] and various other web components [74][35], connecting
over WebSockets to a local Python backend. Downsides were the
missing portability of code and the complexity of shared state between
frontend and backend implementation, as well as missing mature GUI
components. The former led us to implement an overly complex
Remote Procedure Call (RPC) solution, the latter to implement a
custom tree/grid component. Both turned out to be too complex to
maintain, and leading away from the actual scope of this thesis.

Therefore, we discarded this approach and implemented another
extensive frontend prototype in Python with the PyQt5 module (Fig-
ure 10). This allowed us to use the Qt framework’s mature library
of GUI components, and also give up the strict separation between
frontend and backend. The necessity to work with local files and
local network sniffing made a local desktop application seem like a
better fit anyway. Furthermore, we gained the option of integrating
some graphical features we develop into Wireshark in future work,
because it also uses Qt as its GUI framework. Finally, the vast number
of Python modules is available for developing the application itself
and for plugins our users might want to build.

4.5.2 Window Handling

As described in Section 2.3.1, there are several common approaches
to handle the need of working with multiple documents at the same
time. Based on the expected expertise of potential users, i.e. people
from a software development and reverse engineering background, we
assumed that users would prefer a similar document handling as in
Integrated Development Environments (IDEs) and reverse engineering
tools. User feedback in the interviews confirmed this, leading us to
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Figure 9: Frontend prototype developed as a local web application in TypeScript, using the Golden-
Layout dock panel suite, and a custom grid component

Figure 10: Frontend prototype developed as a Qt framework desktop application in Python
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implement a Tabbed-Document Interface (TDI) with dockable and
floatable windows.

4.5.3 File and Project Handling

We examined the UX concepts of several applications with regards to
file handling and grouped them in four broad categories.

Category A is the classic multi document application, e.g. Microsoft
Word, most modern text editors like VS Code, Sublime Text, Notepad++,
and image editors like Gimp and Photoshop. In these applications,
each open window can be either "untitled", or associated with a file,
and it can be either dirty (modified, unsaved) or not dirty (unmodified,
saved).

As category B, file-oriented multi document application, we charac-
terized IDEs like IntelliJ, and modern Web Browsers. Each document
must be associated with a file (or an URL in case of browsers), cannot
be dirty (either files are auto-saved, or the application has no editing
support).

In category C, we placed project-oriented applications, where all data
is stored in a project file, which in turn can contain abstract data
containers which are not associated to a file. Files can be imported
into the application, but the resulting container is detached from the
source file. Saving data back to a file is a distinct "export" process. We
found this concept in the Hobbits application (see Section 3.2.5) as
well as some audio/video software, where media is imported into a
media library.

The last category D is pipeline-oriented applications, like GNU Radio.
These applications are centered around data pipelines with various
data sources, filters and outputs. Files can be the start or end of a
pipeline, but are just one data source and sink of many possible.
The data shown in the GUI is the result of a user-defined pipeline
(e.g. "load file → split according to rules → display as list of binary
packets").

4.5.3.1 Conclusion

Based on user input of frequently working on multiple independent
projects, we devised a project-based workflow instead of one based
on completely independent files. An entire folder can be loaded as
a project, with all related settings, window layouts, macros, annota-
tions, and grammars stored in a self-contained project database file.
Regarding these data, our application is designed as described in
category C. This allows users to, on one hand, share grammars and
annotations easily between files of the same project, while on the other
hand, keeping different projects cleanly separated. Multiple instances
of the application can be opened at the same time to work on different
projects.
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On the other hand, users reported to often work on files generated
by external tools, so we included some concepts from category A,
allowing users to directly load the actual data files from the project
folder, and keep the association to the file. Finally, users also want to
work on live data, e.g. ingesting the results of network sniffing directly
into the application, leading us to introduce some lightweight pipeline-
oriented concepts into the application. Therefore, our application is
based on category C, but contains some concepts from A and D.
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The first prototype was implemented as a web application in Type-
Script, connecting over WebSockets to a local Python backend. Missing
portability of code between frontend and backend implementation led
us to re-implement the frontend in Python with the PyQt5 module.
This also allowed us to use Qt’s mature library of Graphical User
Interface (GUI) components. Furthermore, we gain the possibility of
integrating some graphical features into Wireshark, which also uses
Qt as its GUI framework.

5.1 implementing main data structures

In the Section 4.4, we defined the core data structures of the application.
In this section, we will go into more details on their implementation.

5.1.1 Byte Buffer

ByteBuffers are the basic data container used throughout the appli-
cation. When a binary file is opened in the application, it is loaded
into a byte buffer, and displayed in the HexView component. When
a PCAP file is loaded, the packets are loaded into individual byte
buffers, which are bundled in a byte buffer list.

metadata Byte buffers store five kinds of metadata:

• A dictionary of metadata provided by the data source, e.g. the
packet timestamp from a PCAP file.

• Whether it is marked in the list or not.

• A list of annotations, stored internally in a RangeList as de-
scribed in Section 2.4.

• The name of the annotation set which is currently applied to the
buffer (annotation_set_name).

• If the buffer was parsed using a grammar description: the gram-
mar description name (fi_root_name), and the parsed fields,
as a dictionary accessible by their name (fields) and in a tree
structure according to the grammar (fi_tree).

packet vs . stream A ByteBuffer can represent any sequence
of bytes, e.g. a packet, a file or a data stream (e.g. a reassembled
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TCP stream). In the latter case it is often required to split the stream
into individual packets. There are multiple ways to do this in PRE
Workbench:

• A grammar description can be created, and the store_into

parameter can be set on the type instance which represents a
packet. Once a buffer is parsed with this description, the packets
are stored for further use in a new ByteBufferList.

• A macro can use the ByteBuffer as input data and produce a
ByteBufferList from it. This allows the user to use arbitrary
Python code to split the data.

• Instead of loading the whole stream into a ByteBuffer, a custom
DataSource can be created which splits the data into packets
directly while loading it.

5.1.2 Byte Buffer List

A ByteBufferList stores an ordered list of ByteBuffers and a dictionary
containing metadata, which is usually provided by the data source
(e.g. headers of a PCAP file).

It supports live updates, so data sources can add more packets in
the background. This is useful for live network traces, or "tailing" of a
file generated by an external tool. The list is usually displayed by a
PacketListWidget, which also supports updating the display on the
fly.

stream reassembly Stream reassembly is supported by allowing
each ByteBuffer in the list to have a reassembly key, which can be used
to add more bytes to an existing buffer. For example, the four-tuple
of a TCP stream (source address, source port, destination address,
destination port) could be used as the reassembly key. Then, each time
a new TCP segment is parsed by a grammar with the appropriate
reassemble_into param, it is appended to the ByteBuffer. For TCP,
one usually would not implement this in PRE Workbench, but use
the well-tested TCP stream following feature of Wireshark, but this
is useful when reverse engineering proprietary data segmentation
protocols (see e.g. Section 4.2.2).

5.1.3 Format Infos

A FormatInfo object is the internal representation of a specific type
instance in a grammar definition, e.g. a specific struct, or a byte array
with specific length and display styles. It is instantiated from a subtree
of the Abstract Syntax Tree (AST) of a grammar file. These objects
implement the actual parsing from a ByteBuffer, and can convert
themselves back to their text representation.
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The FormatInfoContainer stores a dictionary mapping definition
names to FormatInfo objects. It allows serializing and deserializing
the contained FormatInfos. Several subclasses exist, for example an
interactive implementation, which can ask the user to create a new
definition if a non-existant name is referenced. Also, the default im-
plementation reads and writes the definitions from and to a text
file, while the ProjectFormatInfoContainer store the definitions in a
project database.

5.2 data sources

In the application source code and in plugins, data sources are im-
plemented as Python classes inheriting from either DataSource or
SyncDataSource. The former can provide data asynchronously, allow-
ing for live capture of data, for example by calling a third-party process
or by reading from the network. The latter are easier to implement and
only load data synchronously, which is most useful to implement data
importers for local files of different types. User-defined macros always
work synchronously, they are just a Python code snippet which is
given all input parameters as predefined variables and needs to store
the generated ByteBuffer or ByteBufferList object in the output

variable.

5.2.1 PCAP Files

The predefined PCAP file data source simply loads all packets from a
local PCAP file by directly parsing the file contents. It supports the
PCAP and PCAPNG file types in big-endian and little-endian byte
order.

5.2.2 CSV Files

The CSV file data source loads a file in the Comma-Separated Values
(CSV) format into a ByteBufferList, so that each row is converted
to a ByteBuffer. One column of the CSV file has to be selected to
provide the payload, which can be decoded from a hexadecimal or
Base64 string. All remaining columns are stored as packet metadata
in the ByteBuffer. The user can configure the exact format of the file,
specifying the column delimiters, quote characters, and whether a
header row is present or not.

5.2.3 Binary Files

Raw binary files can be imported using two different predefined data
sources, the binary file and directory of binary files data sources.
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The binary file data source simply loads binary data from a file into
a ByteBuffer without any modification. No metadata is generated.
The directory of binary files data source scans a local directory using a glob-
style search pattern, and loads all matching files into a ByteBufferList.
The file names and modification timestamps are stored as packet meta-
data.

5.2.4 Macro

As a demonstration for the macro capabilities, and as a template
for users who want to implement their own, we implemented three
different macro data sources: One which imports a JSON file as a
ByteBufferList, another that imports an Intel HEX file as ByteBuffer,
as well as one that imports a binary file splitted into packets using
static delimiters as a ByteBufferList.

The JSON file data source works similar to the CSV one. Instead of
rows in the CSV file, there needs to be a JSON array at the root level.
Each array item must be a dictionary, each of which is converted into
a ByteBuffer, where one entry is used as the payload and all others
are stored as metadata. If the user needs to import a different JSON
structure, they can copy the macro to their project and adapt the code
accordingly.

5.2.5 Data Import From Wireshark

As mentioned in Section 4.3.1, we want to harness the multitude of
existing Wireshark dissectors. To this end, we allow the user to import
packets via Wireshark’s command-line utility, tshark. It provides
a feature to export traces with full dissector output in the Packet
Description Markup Language (PDML), an XML-based file format
[41]. It allows live captures, as well as importing existing PCAP files,
so we implemented the Live capture via Tshark and PCAP file via Tshark
data sources.

The PDML format is structured in the same way as the tree view in
Wireshark’s GUI. As we also support a tree structure for the protocol
fields in our ByteBuffers, we can store the dissector output almost
verbatim in our internal data structures. PDML also contains byte
range information on the fields, so we can also store and display them
as annotations.

This allows the user to fully use our GUI with data imported from
Wireshark, seeing the existing annotations from the dissector and
adding their own ones later on.
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5.3 data exploration gui

The software provides multiple interconnected views on the gathered
data. The main element is the HexView, which is either displayed
immediately after loading a single binary file, or once a packet is
selected after loading a packet list.

5.3.1 Dock Panel Layout

Qt natively provides a basic implementation of dockable tool windows
and tabbed documents. However, we found this not powerful enough,
especially since no split screen view of documents is possible. There-
fore, we use the open source Qt Advanced Docking System library, which
"lets you create customizable layouts using a full featured window
docking system similar to what is found in many popular integrated
development environments (IDEs) such as Visual Studio" [19]. Espe-
cially, it supports arbitrarily nested tiled and tabbed layouts, allowing
the user to view multiple documents at once. While implementing the
library in our application, we contributed to it, by updating the PyQt5
bindings and build process, and fixing some bugs. The screenshot in
Figure 11 shows how a tool window is moved to a different dock area.

Figure 11: Screenshot of Qt Advanced Docking System in use in PRE Work-
bench

5.3.2 Packet List

The packet list widget displays a ByteBufferList in a classical table
layout (see Figure 12), each row representing a ByteBuffer. Packets
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selected in the list are displayed in the Zoom tool window in a HexView
component, where they can be further examined.

The column contents are rendered based on user-defined expres-
sions, which have access to the ByteBuffer and all its fields and other
metadata. Expressions can be entered manually, to perform calcula-
tions on packet contents, or generated automatically from the available
fields using a Quick Add Column feature. The user can transfer custom
column layouts to other packet lists via the clipboard.

A marker feature allows the user to mark interesting of the packets
for future reference. They can also use the search feature to mark all
packets for which a provided expression evaluates to true.

Furthermore, macros with input type ByteBuffer or ByteBufferList
can be executed on selected rows or on the whole list, allowing the
user to process packets using custom code.

Internally, the widget is based on the Qt-provided QTableWidget

with a custom QAbstractItemModel, which implements an adapter
between a ByteBufferList and the Qt framework.

Figure 12: Screenshot of packet list

5.3.3 HexView

The HexView component is a viewer for binary data and is the main
visual component of the application. It displays one or multiple Byte-
Buffers in a hexadecimal and ASCII representation ("hex dump") next
to each other. Ranges of bytes can be annotated with different fore-
ground and background colors. Section headings can be inserted to
visually split a buffer.

It is implemented as a completely custom Qt Widget, including
rendering the display, handling selections, scrolling, and keyboard
shortcuts.

annotations In the HexView ByteBuffers can be interactively
annotated with color via context menu or keyboard shortcut. In addi-
tion, a new section can be started and provided with a corresponding
heading. These annotations can be saved in an Annotation Set and
applied to further ByteBuffers.

In addition, the HexView can display annotations that were added
by parsing with a grammar definition (see Section 5.5.1).
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heuristic highlighter Upon selection of a byte range, several
heuristic detection methods are run in the background, to highlight
matching information in the vicinity of the selected data.

For example, if a range of bytes is selected, the selection length matcher
will convert the number of bytes into various formats, e.g. big and little
endian integer, decimal and hexadecimal string. It will then search
for these representations of the selection length in and around the
selection. The hash matcher will calculate digests according to different
hash algorithms and search for them before and after the selection
(Figure 13a).

The other way around, if a short byte range is selected, its integer
value will be interpreted as a number of bytes, and this many bytes
after the selection will be highlighted in a light grey. Repetitions of
the same bytes as selected are highlighted in teal (Figure 13b).

New heuristics can be implemented as simple Python functions,
either directly in the application code, or in a plugin. For example, a
plugin could match for checksums of the selected bytes.

(a) The selection length (magenta) and hash (yellow) matchers

(b) The repetition matcher (teal) and the selection as length highlighter (grey)

Figure 13: Screenshots of heuristic highlighter results

5.3.4 Helpers

We implemented several features which aid the reverse engineer in
working with binary data.

data inspector A data inspector panel (Figure 14) shows in-
terpretations of the selected byte range in various formats such as
integers, floating point numbers, timestamps, colors and IP addresses.
It also displays hashes calculated from the selection.

regex search The user can use regular expressions to search for
patterns in one or multiple buffers. The results are displayed in a tree
view (Figure 15), clicking a result highlights it in the HexView.

running external tools Using the external tools feature, the
user can use any external command line tool and apply it to the se-
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Figure 14: Screenshot of the data inspector

Figure 15: Screenshot of the regular expression search
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lected data. The currently selected byte range is written to a temporary
file, whose name is inserted into the command line at the location
marked with {}.

The screenshot in Figure 16 shows the external tools feature in use
as a researcher decodes a binary plist (property list) file embedded in
a protocol frame.

Figure 16: Screenshot of the external tools panel

entropy measurement The Shannon entropy [54] is a measure
for the informational value of a message. In a reverse engineering
context, it is useful to find packets which contain encrypted or com-
pressed data. These will have a high entropy, because they have a
similar distribution of byte values as random data, which means the
frequency of each byte value is asymptotic equal, leading to the max-
imum entropy value. The built-in Calculate Entropy macro calculates
the Shannon entropy of a buffer according to Equation 1. It can be
applied to a list of ByteBuffers, for example all packets of a trace, and
adds a new $entropy meta data field to each.

H(X) := −
1

8

∑︂
x∈χ

p(x) logp(x) (1)

5.4 extensibility

PRE Workbench can be extended by the user using macros and plug-
ins. Macros are small code snippets, which are edited and run directly
in the application, for predefined purposes, usually without a custom
user interface. Plugins are developed in an external editor, and can ex-
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tend the application more widely. For example, users can add custom
tool windows using a plugin.

5.4.1 Macros

As explained in Section 4.3.5, researchers often need to write custom
code to process protocol data. To integrate that as smooth as possible
into the workflow, we implemented macro support. Macros are small
user-defined Python code snippets with a defined input data type and
parameter set. There are various places throughout the application,
where macros can be run on data. Based on the input data type, only
compatible macros are displayed. For example, macros with input
types BYTE_ARRAY or STRING are only displayed in the context menu
of the HexView or the text editor component, respectively. The input
object to the macro is provided in a variable named input, which is
directly usable in the macro code.

input types The following macro input types are currently imple-
mented:

none

The macro has no input. It can be executed by double-clicking it
in the Macros tool window.

byte_buffer

The macro expects a single ByteBuffer as input. It can be exe-
cuted by right-clicking a packet in a PacketListWidget or in the
context menu of a HexView. If multiple packets are selected, the
macro is called repeatedly.

byte_buffer_list

The macro expects a ByteBufferList as input. It can be executed
in the same ways as a BYTE_BUFFER macro, but is only called
once.

byte_array

The macro expects a bytes type (sequence of bytes without
metadata). It can be executed in the HexView context menu
after selecting a byte range.

string

The macro expects a character string as input. It can be executed
from the selection context menu of all text editor components in
the application.

data_source

The macro shows up in the Data Source Type select box in the Data
Source window. Its output (to be placed in the output variable
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by the macro) will be displayed in the Data Source window’s
output widget.

security model Macros run in the application process, without
any additional sandboxing, therefore they have the same permissions
as the app itself, usually full user permissions. We want to allow users
to store macros per project. Finally, researchers are expected to share
their project files. Therefore we implemented a TOFE (Trust On First
Edit) security model based on a hash of the macro code, meaning
macros are trusted once a user opened them once in the code editor,
giving them a chance to review the code.

On the one hand, this means the security is completely invisible
to a user working only locally on a project, because they will have
edited the code of every macro they use, therefore all macros are
trusted. On the other hand, if a project file from another machine or a
colleague is loaded, all new macros are considered untrusted, meaning
the user needs to first open each macro in the editor, carefully review
it, and save it again. A hash of the code is then stored in their local
configuration, marking it as trusted. It can then be run as usual.

5.4.2 Plugins

Plugins allow for a variety of extensions to the application by the user,
including custom tool windows, file types, data sources, selection
highlighters, and Protocol Grammar Description Language (PGDL)
functions.

In terms of technical implementation, a plugin is a Python code file
that is placed in the plugin directory by the user. Once it is marked as
enabled in the Manage Plugins dialog, it is imported and executed when
the program is started. Plugins are imported directly after the project
file is loaded, but before the main window is initialized, allowing
plugin developers to access project-specific data, and to still register
custom tool windows, file types and data sources before the main
window is opened.

We provide a number of example plugins [68] to aid as a starting
point in developing custom plugins. The recommended way to develop
plugins is to open the plugin directory as a PyCharm [45] project and
configure PyCharm to use the Python interpreter which is used to
run PRE Workbench. This way, full autocomplete support on internal
objects is available.

5.5 interactive dissector development

Interactive dissector development is powered by three core compo-
nents. First, the textual representation of a dissector, in a user-friendly
syntax named PGDL. This language is described in the first subsection.
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This is has a directly corresponding UI element, the Grammar Definition
Code tool window. Second, there is an internal tree representation of
the dissector (internally called FormatInfo), which can be converted
back-and-forth with the textual representation. And third, the parse
result, an internal representation of parsed protocol data in a tree
structure. This contains references to the FormatInfo structure, allow-
ing the user to directly modify the dissector from the GUI elements
in which the parse result is displayed. These are HexView, providing
the ClickGrammar feature, and the Parse Result tool window, which are
described in the second and third subsections.

5.5.1 Protocol Grammar Definition Language

For designing the PGDL, we were led by the model protocols (Sec-
tion 4.2) as well as some common protocols like the TCP/IP stack.
We analyzed these protocols to find out which elements we need to
describe these protocols’ grammars. For example, many protocols
consist of sequences of differently typed fields, so a basic struct-like
element is required, which allows us to describe a fixed sequence of
named fields of different types.

More complex protocols include repeated elements with variable
repetition counts, requiring a loop-like element to describe the repeti-
tion of another type for either a number of times specified by some
earlier header field, or until the parsed bytes end. Another common
element is the Type-Length-Value (TLV) structure, where the type field
defines with which definition the value needs to be parsed. This causes
the need for a switch-case-like element. We also included a union el-
ement, which can be useful during the analysis phase, if the actual
definition is still unclear and we want to see the parsing results of
several definitions at the same time. Furthermore, a variant element is
provided, which tries parsing the provided bytes with several different
definitions, returning the results of the first successful parse.

For the actual contents of the above-mentioned data structures,
we implemented the data types which are available in Wireshark
dissectors, among them general data types like signed and unsigned
integers, byte arrays, strings and bit fields, as well as more specialized
types like IP addresses and UUIDs. The grammar definition language,
including a full list of all supported data types, is described in detail
in Appendix B.

5.5.2 ClickGrammar

The ClickGrammar feature is enabled by creating a new grammar
definition from the HexView context menu. It starts with a struct

containing only a single byte array, named _undef_1. The current
buffer is then parsed using this definition. After that, a byte range can
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be selected, and the context menu will list all data types which can
have the selected length (see Figure 17). By selecting a data type, and
typing in a field name in the displayed dialogue box, a new field is
inserted in the struct, while the _undef_1 field is splitted and resized
as needed to make room for the new field. All remaining undefined
byte ranges can be assigned types in the same way.

Figure 17: Screenshot of the ClickGrammar feature in use, displaying all
possible types for a two byte range

5.5.3 Grammar Parse Result Tree

The Parse Result tool window (see Figure 18) displays the parse results
associated with the currently selected byte buffers. Each field is dis-
played with its name, value, byte offset, and, if configured, highlight
color. Selecting a field in the tree view highlights it in the HexView,
and vice versa. The user can directly open a code editor to view and
modify the definition of this field in PGDL syntax. They can also edit
the visualization of fields, including the background and foreground
color, section titles, and visibility in the tree view. If a parsing error
occurs, it displays the error message in place of the field value.

5.5.4 Automated Testing

To verify that the implementation stays correct in the light of code
refactorings or addition of new features, we used automated unit
tests. In total, there are 34 unit tests verifying the correct function of
the PGDL-based parser. Five of these check the correct parsing and
generation of the PGDL syntax itself, another three the correct parsing
of PCAPnG files based on test fixtures from [22]. The others verify
the proper parsing of arbitrary data using PGDL descriptions. Tests
were either written during the implementation of a new feature to
immediately verify it, or as bugs were fixed to prevent regressions. We
used the pytest framework [24] to run the tests and summarize the
results.
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Figure 18: Screenshot of the Parse Result tool window

5.6 generating wireshark dissectors

As a powerful way to further use the protocol grammars developed
in PRE Workbench, we planned to generate Wireshark dissectors
from them. In this thesis, we implemented a proof-of-concept code
generator for Wireshark Lua dissectors, which supports a subset of the
protocol grammar language. In this section, we first introduce some
basic internal concepts of EPAN, Wireshark’s packet parsing engine,
and their usage from the Dissector API [9], before we explain the code
generation process itself. We also discuss the current limitations of our
proof of concept, and show an example.

5.6.1 Wireshark Concepts

When the results of a packet capture is displayed in Wireshark, it auto-
matically runs appropriate dissectors on the captured data. Dissectors
can register themselves in so-called dissector tables, announcing that
they are able to parse certain protocols. The user can also manually
choose which dissector to use.

Dissectors can either be written in C and in Lua. C dissectors can
be integrated into the Wireshark codebase. Lua dissectors as well as
additional C dissectors are loaded at runtime from the user’s plugin
directory.

For each packet it should parse, the dissector’s parse function is
called. It is passed a Tvb holding the payload to parse, a TreeNode into
which the results should be stored, and a PacketInfo structure.

The Dissector API has been extended over many Wireshark versions
and therefore contains some historical oddities and obsolete methods.
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Especially the handling of the many supported data types for protocol
fields is inconsistent, requiring some workarounds in the generated
Lua code.

5.6.1.1 Data Buffers

Captured data is provided to the dissector in a data structure called
a Testy, Virtual(-izable) Buffer of guint8*’s (Tvb). Testy is a joking
reference to the fact that the buffer performs bounds checking1. Virtual
means that the buffer does not need to hold its own backing data,
but can reference a subset or a composition of other Tvbs’ data. This
allows us in the dissector code to create Tvbs of sub-ranges of our
packet without much memory overhead.

5.6.1.2 Packet Details Tree View

The dissector writes its results into a data structure which directly
corresponds to the representation in the Packet Details tree view in the
Wireshark GUI.

In its entry point, it is provided with a TreeNode representing the
root node of the tree view. Usually, it creates a single child node,
representing the parse results of the current protocol layer, in which
further children are created to represent the individual data fields. A
TreeNode provides various methods to add child nodes, of which we
use add and add_packet_field in the generated code.

Each data field occuring in the protocol should be registered as a
ProtoField method, making them usable in packet filter expressions. In
the parameters, we also provide details on how to parse the packet
from the Tvb, and how to render it in the tree.

5.6.2 Code Generation

Dissector generation is implemented as a separate sub-package of
PRE Workbench, which can be executed as a command-line utility as
well as from the GUI. The Lua-specific parts of code generation are
implemented as another sub-package, to prepare for implementation
of C dissector generation in the future.

The code generator is provided with a FormatInfoContainer hold-
ing the actual grammar definitions, the name of the main definition
from which dissection should start, and an optional list to filter which
definitions from the container should be exported.

It generates some boilerplate code to initialize a new protocol and
register it in the DissectorTable, and an entry function from which
dissection starts and which creates the root TreeNode. It also generates

1 According to a code comment, "the buffer gets mad when an attempt is made to
access data beyond the bounds of the buffer" [66].
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the code that defines the ProtoFields from a list produced by the
code which generates the actual parser functions.

5.6.2.1 Building the Tree

The actual parser code, which reads data from the Tvb, parses the
binary data, and generates the TreeNodes from it, is generated from a
visitor class. The visitor is initially called with all FormatInfos defined
on the root level of the grammar file, and generates parser code for
each of them. This parser code is then wrapped in a Lua function
named after the grammar definition. The visitor then descends into
the child types of the composite types. For example, the method for a
repeat generates a loop statement, and calls the visitor on the child
type to generate the code inside the loop.

Once the visitor reaches a FieldFI (FormatInfo for a pre-defined
field type), it generates code to add a TreeNode to the subtree, store
the parsed value into the fval (field value) table for future reference,
and to check magic values if specified. It also stores information
about the field definition into a list which is later used to register the
ProtoField definitions on the protocol, allowing the user to use the
fields in Wireshark’s filter and column expressions.

5.6.2.2 Expressions

Expressions are handled by running a transformer on the abstract
syntax tree of the expression. A transformer is essentially a visitor, but
each function has a return value. The same pattern is used internally
in PRE Workbench for evaluating expressions and for converting them
to their string representations.

In this case, the transformer generates a corresponding Lua expres-
sion. For example, references to a field from the same struct or an
ancestor are represented as the anyfield_expr in the AST, and as
a plain identifier in the PRE Workbench expression syntax. In the
Lua code, we store the values in a table named fval, therefore we
transform an expression like (length - 2) to fval[’length’] - 2.
Transformations for more complex expressions, like bitwise operations
or access to nested fields, are not implemented yet in the prototype.
However, because Lua is a turing-complete language, there are no
theoretical limitations preventing full expression compatibility.

5.6.2.3 Registration

When calling the code generator, the user can also specify the dissector
table in which the generated dissector should register itself, and the
pattern to match (e.g. udp.port and the port number in the case
of UDP-based protocol). Multiple sets of table and pattern can be
provided in case the protocol is transmitted over several different
ports.
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If the protocol does not have an underlying layer like IP or UDP,
the user can register the dissector in the special wtap_encap table,
allowing them to parse raw bytes from a PCAP file.

5.6.3 Limitations

Our current code generator implementation is limited to a subset of
possible PRE Workbench protocol grammars. Only structs, repeats,
named references to other types and a subset of the built-in types are
supported, other types like bitfield, variant, union and switch are not
implemented in the prototype. In the expression syntax, only simple
expressions consisting of references to fields in the same structure, as
well as basic maths, are supported. Even this prototype implementa-
tion is already useful for users: for simple protocols, they can generate
complete Wireshark dissectors, and for more complex ones, they can
generate a stub to extend manually in the Lua code.

5.6.4 Example

Figure 19: Wireshark parsing MyProto using the automatically generated
dissector

To show the capabilites of the code generator, we use a dummy
protocol called MyProto. It consists of packets, which start with a
magic number, followed by any number of TLV sequences. It can
be described by the grammar definitions in Listing 1. Generating a
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1 MyProto struct(endianness=">") {

2 magic UINT32(magic=0xAABBCCDD, show="hex")

3 tlvs repeat MyTLV

4 }

5

6 MyTLV struct(endianness=">") {

7 type UINT16

8 length UINT16

9 payload BYTES[length]

10 }

Listing 1: Definition of the MyProto sample protocol

Lua dissector using prewb_codegen from these definitions results in
the Wireshark dissector shown in Section C.2, which can directly be
stored into the Wireshark plugin directory. The screenshot in Figure 19

shows Wireshark using this dissector on a sample PCAP file containing
packets of the MyProto protocol.

5.7 application deployment

Publishing a Python GUI application in a way that it is easily instal-
lable by end-users on different platforms is a non-trivial task. For
the first iteration, we only built a Python module to be published to
the Python Package Index (PyPI). This allowed users to install the
software using the pip command-line tool on their computers and
worked on all machines PyQt supplies a binary distribution for (this
includes x86_64 machines running macOS, Linux and Windows).

However, on M1 macOS computers, special workarounds2 were
required, as no M1 build of PyQt is available. To make the installation
on M1 Macs more user-friendly, we packaged the application into a
macOS App Bundle using PyInstaller, which is automatically executed
using the Rosetta compatibility layer. We also provide a Windows
distribution packaged using PyInstaller and InnoSetup.

The Python module distribution path is still used for installation on
Linux systems, by users of the command-line utils distributed with
PRE Workbench, and by users wanting to install additional Python
packages to import them into custom macros or plugins.

2 Instructions from the manual at that time: "To run the application on the Rosetta
compatibility layer, create a copy of Terminal.app (call it something like Terminal
(Rosetta).app), click Get Info in its context menu, and check the Open using Rosetta
checkbox under General. Afterwards, follow the instructions for Intel Macs."
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E VA L UAT I O N

We evaluated PRE Workbench in two different ways: First, we conducted
a user study with some of the researchers we interviewed in Section 4.1
and some other researchers. Second, we used the software itself to
annotate some protocols, evaluating how well the software was suited
for importing the traces and how well the description language was
suited for describing the protocol data structure. Finally, during the
development, we conducted some benchmarks for optimizing the
parsing speed and GUI responsiveness, which we also present in this
chapter.

6.1 user study

In the first phase of the user study, we conducted user interviews to
establish goals and guide the design of our software. This phase is
described in Section 4.1.

In the second phase, we evaluated the basic usability of our GUI
concept. We did this in an early phase of development, with a very
simplified proof of concept, and used the results to influence design
decisions.

In the third phase, we gave working increments of the software to
beta testers. The results influenced the implementation, in terms of
prioritizing features, and optimizing the user experience.

In the fourth and final phase, we conducted a usability test on the
final version of the software. We documented the findings, and fixed
some remaining bugs which surfaced during the test.

In all phases, we solicited feedback in multiple ways: First, by
noting down questions testers asked during use, second, by observing
them during use (via screen share or in person), third, by using the
automated error reporting implemented after the first user tests, and
finally, by directly asking for feedback.

6.1.1 Results Second Phase

One main result was that a tab- and dock-panel-based GUI is better
accepted than the classic Multiple-Document Interface (MDI) with
freely movable child windows. The freely movable windows often led
to confusion, e.g. when they were moved out of the visible area. There-
fore, we decided to hard-code the GUI concept to dock-panel, and not
to leave it adjustable between dock-panel and classic MDI as before.
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This simplifies the development and was considered appropriate, as
the classic MDI was not considered user friendly.

In addition, it turned out that pre-compiled application packages
for common operating systems should be made available, since the
installation via the Python package manager pip led to problems for
some users.

Moreover, by observing the users, we found numerous possibilities
for detail improvements of the usability. For example, users requested
that more elements of application state should be persistent over
restarts, like column layouts of lists, or last used folder for file dialogs.
Also, some context menus proved to be not discoverable enough,
therefore we decided to add more menu and toolbar items. We have
also decided to integrate automatic error reporting for future user
studies, so that unhandled exceptions and application crashes can be
reported to us automatically.

6.1.2 Results Third Phase

We had two beta testers who directly used the software in a reverse
engineering project they were currently working on. One of them was
the researcher from the user interview in Section 4.1.4. The other was
a student working on a practical course at SEEMOO.

Both users had difficulties with basic usability flaws, but were
able to use the software successfully after some guidance by the
author. Most problems were features that were not discoverable in the
User Interface (UI), e.g. features only accessible using shortcut keys,
which were documented in the manual but had no visible button or
menu entry in the UI. Furthermore, error messages resulting from
incorrect use were often not descriptive enough for the user to find
out what they did wrong. We noted these obstacles and used them
as a basis for further improvements to the user experience. We also
added Help buttons throughout the application to make the existing
documentation more accessible.

Other problems were simple bugs, where some feature just did
not work in certain circumstances or with certain types of input data.
These were fixed in further increments of the application.

Finally, there were missing features for which the users had to
use workarounds, like having to convert input data into a format
supported by the application first, or using external tools to fully
parse a protocol structure. We implemented some of these features,
especially more supported input formats, but have to acknowledge
that there are too many possible data formats out there to support all of
them out of the box. Therefore, we additionally made the application
more extensible, allowing users to program their own data sources for
the application as Python-based macros. We also decided to make the
definition language more powerful, so users need to refer to external
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(a) Classic MDI

(b) Tabbed interface

Figure 20: Early proof-of-concept implementations for GUI feedback
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tools in fewer cases. To this end, we added a new syntax element for
bit fields, as well as a new data type to display calculated values in
the parse tree.

In general, users were able to load the data they recorded using
other tools into PRE Workbench, they were able to use the annotation
features of the HexView, and could also describe the basic syntax of
their binary protocols using the definition language.

6.1.3 Results Fourth Phase

After we had largely completed the implementation, we performed
final user tests to confirm usability and applicability in practice. To do
this, we asked four people to install the newest version of PRE Work-
bench and apply it to a real-world protocol that they had analyzed in
the past. Three of them were also part of earlier phases (interviewees
one, three and four from Section 4.1). We observed and guided the
participants during the tests via screen sharing over BigBlueButton.

For all participants in this phase, we noted the used operating
system, the protocol they test the application on, and their previous
experience. For the user test, we went through the same basic tasks
with everyone:

• Loading a trace of their chosen protocol from a file, splitting into
packets if necessary.

• Viewing some packets in the HexView and annotating them
using colors and section headers, and applying the annotation
set to multiple packets.

• Creating a (simplified) grammar definition for their protocol,
using the ClickGrammar feature and/or manual input.

• Parsing multiple packets using the definition.

• Adding fields from the definition to the packet list as columns.

All users were able to perform these tasks on their protocols. How-
ever, in all cases some guidance was needed. This is due to the fact
that we wanted to complete the tests within an hour and therefore
gave hints instead of letting the users find information in the docu-
mentation.

For loading trace data, performance varied based on the format of
the traces. PCAP files were very easy to load. For CSV files, a user
noted that the import dialog could be more user friendly, e.g. marking
which fields are mandatory. Most difficult was a binary file containing
multiple packets, separated by protocol-specific start and end marker
sequences. For this file a custom data source macro was necessary.

In the annotation step, users appreciated the selection heuristics
feature, especially detection of length fields and repeated bytes, as
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well as the binary (bitwise) view. However, they missed the possibility
to select individual bits.

When creating grammar definitions, the ClickGrammar feature was
praised as simplifying the workflow by eliminating the need to manu-
ally calculate field offset and length.

Feedback for the overall UI was positive, the Integrated Develop-
ment Environment (IDE) style dock panel interface was well received.
The reasons given were the well-organized display of many files open
at the same time due to the tab interface, as well as the high flexibil-
ity due to the docking functionality. Criticism included the not very
expressive icons, the still missing keyboard usability in some places,
as well as the fact that some buttons are not clearly recognizable as
such. It was noted that the software requires some training, but this
was considered reasonable for a tool of this feature set.

6.1.4 Overall Results

The continued user tests over the development cycle showed a clear
progression in usability and feature set. They also allowed to prioritize
our development efforts based on user’s needs.

The overall UI paradigm evolved towards the IDE style dock panel
interface, providing a feature-rich, customizable interface for expert
users. The ClickGrammar feature (Section 4.3.4) we implemented for
the fourth phase of user testing provided a leap in the usability of
the software, allowing users to define fields using a point-and-click
approach, neither needing to know field types by heart nor calculating
offsets and length manually.

The software proved to be very stable in the sense that it rarely
crashed in a way leading to data loss. This is mainly due to the fact
that with Python we use a memory-safe programming language and
with Qt a very mature UI framework.

In summary, there remain many more features that could be imple-
mented in a future version of the application, but testing has shown
that it can be used well for its intended purpose.

6.2 usability on known protocols

We evaluate the application by using it on some protocols where
the structure is already documented, either because they are open
protocols, or because we or other researchers reverse engineered them
in the past. We focused on the ability to import and parse traces of
these protocols. In this section, we describe the difficulties of parsing
these protocols and how we used the Protocol Grammar Description
Language (PGDL) and custom macros to parse them.
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6.2.1 Internet Protocol Stack

First, we evaluated PRE Workbench on some base protocols of the
Internet protocol stack, namely the Ethernet MAC [1], IPv4 [26] and
TCP [65] headers.

data import Internet protocol dumps are commonly stored in
the PCAP file format generated by tcpdump and Wireshark. We used
a PGDL definition (Section C.4) to build our internal parser for im-
porting PCAP and PCAPnG files. These file formats contain complex
elements like endianness determined by a byte order mark, multiple
block types and padding on 32-bit boundaries. All these elements can
also be expressed in PGDL definitions.

parsing We specified the syntax of some common protocols of
the Internet protocol stack using PGDL to show that it is powerful
enough for most applications. For example, the grammar definition of
Ethernet, IPv4 and TCP headers including variable-length option fields
and integer fields not aligned to byte boundaries can be expressed
fully in PGDL as shown in Section C.3.

6.2.2 Bluetooth Smart Lock

Second, we evaluated the software on the proprietary binary proto-
col of a Bluetooth Smart Lock developed by a German vendor [67].
The architecture and protocols of this IoT system are summarized in
Section 4.2.2. We focused on the connection between the Android app
and the IoT device via Bluetooth Low Energy.

We did not capture data on the other channels: The app does not
have a relevant Internet connection. The serial connection on the device
has the same data as Bluetooth.

data import Using the Bluetooth snoop log feature on Android, we
sniffed the connection between phone and device. We downloaded the
data from the Android device via Android Debug Bridge (ADB). Then,
we used Wireshark to filter and convert it to the PCAP file format,
which we could then to import into PRE Workbench.

parsing To parse the multi-layered protocol, we first specified a
minimal PGDL description for the Bluetooth packet, including Blue-
tooth lower layers HCI, L2CAP and ATT, as well as the proprietary
fragmentation layer. The description as well as a parse result is shown
in Figure 21.

To reassemble the fragmented packets, we needed to implement a
custom macro iterating over the parsed ByteBufferList. The macro also
decrypts the encrypted packets. The decryption key, extracted from
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Figure 21: Smart Lock raw Bluetooth packets

Figure 22: Smart Lock reassembled, decrypted and parsed application pack-
ets
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a QR code packaged with the device, is given as an input parameter
to the macro. We were able to reuse the decryption code for the
custom AES-based encryption scheme from our open-source Python
implementation of the protocol, pysmartlock [46]. Finally, the macro
creates a new ByteBufferList with the resulting reassembled, decrypted
packets. These are in turn parsed using another PGDL description.
The results of this process are visualized in Figure 22.

The application protocol has a rather simple structure. Our PGDL
description consists of a main switch type, which chooses depending
on a type field from about 30 packet types. Some of the packet types
contain bit-wise fields, which could be succinctly described using the
bits type.

6.2.3 Apple Remote Invocation

Finally, we used the Apple Remote Invocation (ARI) protocol for eval-
uation, reverse engineered by Kröll et al. [29]. We created grammar
definitions for the packet and TLV header structures of the ARI pro-
tocol. We used these definitions to parse the sample files from the
ARIstoteles Git repository [51].

data import We imported data from the sample files in the ARIs-
toteles Git repository. This caused no problems because the sample
files were in two common formats: First, PCAPnG files containing
directly the ARI data, without any lower layer headers. Second, raw
binary files containing a single ARI packet each. In PRE Workbench,
these can be imported either individually using the Binary File Data
Source or as a packet list using Directory Of Binary Files Data Source.

parsing We parsed the headers of ARI packet and ARI TLVs.
Here, the tricky part was a convoluted header structure containing

integers not aligned to byte boundaries, in little-endian encoding.
However, the bits type as described in Section B.1.8 is able to describe
this structure.

6.3 dissection speed

We expect our application to be used mostly with small files of up
to a few hundred packets. This assumption is based on the fact that
our application is intended to manually annotate binary packet data,
which a typical researcher will not do on more than a few hundred
packets. Occasionally, users might want to annotate or parse big trace
files, in which case performance of loading and parsing files matters.

Therefore we evaluated the speed of PRE Workbench’s grammar-
based parser in Graphical User Interface (GUI) and Command-Line
Interface (CLI) mode, and compared it to a Wireshark Lua dissector
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- 300 packets 3000 packets 30000 packets

PRE Workbench GUI 0.14 sec 1.25 sec 12.6 sec

PRE Workbench CLI 0.35 sec 0.91 sec 6.0 sec

Tshark CLI 0.34 sec 0.67 sec 4.6 sec

Table 2: Dissection speed evaluation

Figure 23: Dissection speed evaluation

generated by PRE Workbench. We used an example protocol similar to
the one described in Section 5.6.4, and generated test files with three
different packets repeated 100, 1000 and 10000 times. One of them
violates the protocol definition to also include exception handling in
the evaluation.

The evaluation was performed by manually running the respective
tools on the author’s computer, a MacBook Pro with a 2.6 GHz Intel
Core i7 processor. The command line tools were timed using the time

command line utility, the PRE Workbench GUI displays the elapsed
time for loading data in the status bar. Each combination of tool and
input file was repeated three times. Only the fastest result of each case
was noted, because "in a typical case, the lowest value gives a lower
bound for how fast your machine can run the given code snippet;
higher values [...] are typically not caused by variability in [...] speed,
but by other processes interfering with your timing accuracy." [64]

The results are presented in Table 2. We confirmed that for small
traces of a few hundred packets, the performance differences are
irrelevant. However, very large files of tens of thousands of packets
take a long time to load in the GUI, because Range objects are created
for each field, annotating individual bytes in the buffer. This is not
performed in the CLI, where only the actual parse result objects are
generated and printed as JSON.
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More research showed that approximately two seconds of the load
time for the 30000 packets file are spent parsing the PCAP file. Our
PCAP parser is currently very inefficient, it uses the protocol parser
internally to parse the PCAP file format. This can easily be made more
efficient by switching to an external PCAP reader library. We verified
this by replacing the PCAP parser in the PRE Workbench CLI with
the dpkt library [13], which reduced the PCAP parsing time from two
seconds to 0.05 seconds.

The Wireshark GUI was excluded from performance tests, because
it is difficult to measure load times exactly there. However, it feels fast
even for large files, because packet parsing is performed on-the-fly.
When features are used that require the whole file to be parsed, like
filtering by an expression, times are roughly similar to Tshark CLI
times. A similar feature could be implemented in PRE Workbench in
a future version, if the need for handling such files should arise more
often, either by parsing packets in a background thread, or by only
parsing displayed rows.

As a conclusion, the parser itself is similar in speed to Wireshark
Lua dissectors, however, our GUI is slow when loading large files, and
our PCAP parser can be replaced by a faster library. For small files up
to a few hundred packets, which we assume are more common in our
use case, all components are sufficiently fast.
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D I S C U S S I O N

In this chapter, we discuss the relationship of PRE Workbench to other
tools in the field of protocol reverse engineering, as well as possible
future work on the software.

7.1 relationship to other tools

To clarify our contribution, we would like to distinguish our software
from other programs in the following.

wireshark At the first glance, PRE Workbench is very similar to
Wireshark, both can load a packet trace, display it as a list and hex
dump and dissect packets.

The difference lies in the nature of the dissectors. In Wireshark,
packet traces are the data it operates on, whereas dissectors are a fairly
static component of the software itself, mostly present in the form of
compiled C code. In PRE Workbench, dissectors are data which the
user works on in the application. They can be modified on-the-fly, and
exported into a Wireshark compatible format.

We also considered implementing our application as a plugin to
Wireshark, however, we decided against that: Wireshark does not
provide an API for plugins with complex GUI features [71], therefore
we would have needed to work directly on the Wireshark core code,
which is implemented in the C programming language. We wanted to
quickly iterate on the GUI, which is a lot more efficient in Python.

canape The CANAPE application also has similarities to PRE
Workbench. Apart from the fact that CANAPE is out of support
and only works on Microsoft Windows, PRE Workbench provides
additional features specifically aimed at dissector development:

• Point-and-click creation of dissectors directly from the hex dump
view (ClickGrammar)

• Live update of parse results

• Generation of Wireshark dissector code

• Support for more input file types, e.g. PCAPnG
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7.2 future work

We identified Future Work in three categories: improvement of existing
implementation, new features, and evaluation.

ux improvements We were able to identify the following major
potentials for improvement of the user experience:

• Extend point-and-click grammar generation, by supporting some
options like color, endianness and display style directly in the
name entry dialog, and support creation of complex types (e.g.
repeat) in the tree view.

• Support hotkeys in more places, especially for grammar creation.

• Clean up and improve the menu system. Currently, many actions
are only available through context menus, but they would be
better discoverable if also visible in the main menu and in tool
bars.

• Customize dialogs. Currently, many dialogs are programmati-
cally generated, but some would profit from a more specialized
dialog or combining multiple dialogs into one (e.g. the macro
editor, which is currently spread over three different dialogs).

• Expressions for custom columns in PacketList would benefit
from an easier-to-use expression syntax and an autocomplete
feature in the editor.

pgdl improvements The Protocol Grammar Description Lan-
guage (PGDL) can mainly be improved in the comment syntax, and
its error handling capabilities.

Currently, comments are only supported in specific syntactic places,
e.g. before structure fields. Usability of the language would increase if
comments were allowed in all places where common programming
languages allow them.

The error messages for grammar and data parsing errors are cur-
rently quite verbose, but and can be confusing to users. This could be
improved by handling more error cases explicitly, instead of relaying
the internal Python exceptions to the user. Also, in the current imple-
mentation, many errors arise only at data parse time, but could be
already detected at grammar parse time, e.g. invalid function names
in expressions.

completing lua generation The Lua generator is currently a
proof-of-concept, which does not implement all types and expression
operators supported by PGDL. The necessary work to complete this is
described in Section 5.6.3.
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7.2.1 New Features

The Wireshark dissector generator is developed with the premise of
being extensible to other target languages. As C dissectors are more
performant in runtime, it might be promising to implement C code
generation.

Several new features to support the reverse engineer during static
analysis could be implemented: More heuristic detection capabilities
could be implemented, either as part of the heuristic highlighter, or
as a macro working on packet lists, comparing them for similarities.
In a similar approach, external tools for automatic Protocol Reverse
Engineering (PRE) could be integrated, for example, to be applied
to a packet list and search for field boundaries. Also, according to
interviewed researchers, a binary diff feature displaying the differences
between two or more packets would be a useful addition.

Another new avenue to make PGDL descriptions more useful
would be to generate fuzzing inputs based on protocol grammars.
The field values could either specified directly, e.g. from a JSON
file, or by placing data generation directives in the PGDL syntax,
e.g. a field could be annotated UINT16(generate=(rand(0,5000)))

to generate random values between 0 and 5000 in this place, or
UINT16(generate=(len(payload))) to calculate a correct value from
another field in the packet. Another possibility is to make field values
in the parse result tree editable, so that packets could be modified
directly in the GUI.

7.2.2 Evaluation

The software can be further evaluated as more researchers use it on
more protocols.

First, the forth user study phase could be continued with additional
subjects. Furthermore, after the application gains more users, these
users could be asked for feedback. More participants in the user study
or feedback round would allow usage of standardized questionnaires.

Second, bug and crash reports users submit through the app can
be evaluated continuously. Users of the application are expected to be
technically knowledgeable and therefore able to provide usable bug
reports or even patches.

And third, it would be possible to introduce a telemetry feature
which reports usage data, e.g. which features are used most. However,
much consideration would have to be given to protecting the privacy
and intellectual property of users.
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C O N C L U S I O N S

In this thesis, we studied the workflow of researchers performing man-
ual protocol reverse engineering of binary protocols. We found a need
for a software to support this task. Therefore, we developed Protocol
Reverse Engineering Workbench, a software to support researchers in
analyzing and documenting protocols, as well as in verifying their
findings.

As part of this, we created a desktop application to import, annotate
and parse protocol data. We designed the Protocol Grammar De-
scription Language (PGDL), a declarative language to describe binary
protocols. We implemented a parser that parses packets according to
a PGDL description, as well as a code generator to generate Wireshark
dissectors from a PGDL source.

Our goals are to design a software that is user-friendly for expert
users, extensible enough to handle unexpected input data, and al-
lows users to iterate quickly on protocol structures by providing fast
turn-around times. To reach these goals, we based our design and
implementation process on interviews and user studies conducted
with researchers and students who are potential users of the software.
We evaluated our success using a final stage of user studies, accom-
panied by automated unit tests and performance evaluation of the
parser. We also manually tested the application’s import features and
the description language on several toy and real-world protocols.

User evaluation showed that the application can be used for the
dissection of protocols the researchers last worked on, and that its
IDE-style user interface is sufficiently flexible while still intuitive. It
also worked well in our own manual tests.

A fundamental limitation of the PGDL lies in its declarative nature,
making it impossible to handle certain complex protocol features
directly in the grammar, e.g. fragmentation or encryption. This is
mitigated by extending the application using macros.

In conclusion, we developed a software that proved to be a use-
ful addition to a protocol reverse engineers toolbox, simplifying the
discovery and documentation of a binary protocol’s structure. The
software is published under an open-source license [69].
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U S E R S T U D I E S

In this appendix we provide the questions asked and the mock-ups
shown to participants during the first phase of our user studies. As the
interviews were conducted in German, the questions are provided as-is
in German language. Responses and conclusions from the interviews
can be found in Section 4.1.

a.1 interview questions (german)

Nutzerinterviews zur Untersuchung der Anforderungen an eine Soft-
ware, die Forschende beim Reverse Engineering von Binärprotokollen
unterstützt, indem in einem GUI Protokollmitschnitte annotiert und
daraus Dissectoren generiert werden können.

a.1.1 Rahmenbedingungen deiner Arbeit

• In welchem Kontext analysierst du Protokolle? (Thesis, Pentest,
...)

• Was sind Ziele und Zwischenziele der Untersuchung? (Finden
von Sicherheitslücken, Entwickeln kompatibler Software, Ausle-
sen von Daten, schriftliche Dokumentation, Entwickeln eines
Wireshark-Dissector, ...)

• Was sind charakteristische Eigenschaften der untersuchten Pro-
tokolle?

– Binary/Textbasiert

– Verschlüsselung

– Obfuscation

– ...

• Wie ist dein Workflow? Wie gehst du vor?

• Welche Tools nutzt du dabei aktuell?

a.1.2 Technische Rahmenbedingungen

• White box / Black box - Hast du Zugang zum Source Code /
Binaries einer oder beider Kommunikationsseiten?

• Auf welchen Plattformen laufen diese (z.B. PC, Mobile, Em-
bedded, eigene/fremde Cloud), hast du dazu Zugang (z.B. auf
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Applikationsebene, Debugger, System/Root-Zugang, Encryption
keys)?

• Wo werden Protokollmitschnitte angefertigt (auf dem unter-
suchten Device, Sniffer dazwischen) und mit welchen Tools? In
welchen Formaten liegen sie dann vor?

a.1.3 Annotation Tool

• Was fehlt dir aktuell, was ist unnötig umständlich? Was wäre
nützlich?

• Würde dir eine Software helfen, in der du Protokollmitschnitte
interaktiv annotieren, und Dissektoren entwickeln kannst?

• Wie sollte die Benutzerführung aufgebaut sein?

– Eigenes GUI/Einbettung in existierende Software (z.B. Jupyter,
Wireshark)

– Mehrere Dateien pro Instanz? (Tabbed, MDI?)

* Eine Datei (z.B. Wireshark - siehe Figure 24)

* Mehrere Dateien in einzelnen Fenstern (z.B. GIMP -
siehe Figure 25)

* ... oder Tabs (z.B. Webbrowser - siehe Figure 26)

– Anordnung und Anzahl der Bedienelemente (z.B. Paketliste,
Hex dump, Dissection tree, Dissector code)

– Maus/Tastaturbedienung

• Welche Importfunktionen wären wichtig um Mitschnitte einzule-
sen? (z.B. pcap, CSV, logic analyzer traces, raw serial data)

• Ist es relevant, Daten in Echtzeit während dem Mitschnitt anzuzeigen?
(Live capture)

• Ist es relevant, Mitschnitte zeitlich zu korrelieren (z.B. mit an-
deren Mitschnitten, mit Notizen mit Timestamp, mit Video, etc)
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Figure 24: Mock-up: Single Trace File per Instance, Detail Windows for Comparing Packet Contents
(like e.g. Wireshark)
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Figure 25: Mock-up: Tabbed MDI Interface with Dock Panels

Figure 26: Mock-up: Multi-Window / Inspector Style (like e.g. GIMP)
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P R O T O C O L G R A M M A R D E S C R I P T I O N L A N G UA G E

A grammar file consists of a list of type definitions, in the format name1
type_instance1 name2 type_instance2 ..., each element separated
by white-space. The following sections explain the main syntax ele-
ments of the language, namely types, parameters (including values)
and expressions. For a formal specification of the language, see Sec-
tion C.1.

b.1 types

A type (or type instance) is a specific data type as specified in a grammar
file, e.g. a struct containing specific fields. Type instances can occur
at the root level of the file, preceded by an identifier, forming a type
definition, or inline, for example as the type of a struct field or as the
child type of a repeat.

Each type instance belongs to a type class, which determines the
definition syntax as well as the parser behavior. Most type classes
specify composite types, meaning they are constructed from one or
more other types (e.g. the struct type class). Exceptions are named
type references, predefined types, and the bits type class. The named
type reference is a special type class in that it does not define a new
type, but refers to another type definition, which was defined at the
root level. All type classes are introduced in the rest of this section.

b.1.1 Named Type Reference

In any place where a type instance is expected, a name can be used to
reference another type definition in the same file. Definitions can be
placed in the file in any order. An example for a named type reference
is shown in Listing 2.

This allows for generalization, because the same type instance can
be referenced in multiple places (e.g. to define a common header
shared by many different packet types). It can also make the grammar
easier to read, because special cases can be put away at the end of the
file, and the nesting depth can be reduced. After the name, parame-
ters configuring parsing or visualization details can be provided in
parentheses. This makes more generic type definitions possible, where
e.g. the endianness is left open until the usage.
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1 MyPacket struct {

2 /* references to user-defined types */

3 header MyHeader

4 payload MyPayload

5 }

6 /* here are the type definitions referenced above */

7 MyHeader struct { ... }

8 MyPayload struct { ... }

Listing 2: Example of named type references

b.1.2 Predefined Types

Many common types of integers, strings, floating-point numbers and
network addresses are predefined. A complete list is provided in
Table 3. For easier adaption, they are named the same as in Wireshark
dissectors.

As with all type instances, parameters can be provided in paren-
theses after the type name. The parameters can be preceded by a size
expression in square brackets. Example code using predefined types
is shown in Listing 3.

lengths For variable-length types (marked with length E in Ta-
ble 3), a size expression needs to be provided in square brackets after
the type name.

For dynamic-length types (marked with length D), the actual length
of the field is determined during the parsing process. Currently this
only applies to STRINGZ, a null-terminated string.

Prefix-length types (marked with length P) are composite types
consisting of an unsigned integer determining the length of the directly
following payload field. The size in bytes of the unsigned integer needs
to be provided in the mandatory parameter size_len.

parameters All integer-based types with more than one byte, as
well as the floating-point and the GUID types, require the endianness

parameter, containing a < or > sign denoting the byte order. The string
types require the charset parameter. These parameters can also be
specified on a parent type, e.g. the enclosing struct, and cascade down
to all child elements.

The ABSOLUTE_TIME type supports an optional unit parameter to
specify the time unit as us, ms or s. If it is omitted, the parser tries to
guess the unit. Timestamp are always interpreted as relative to the
UNIX epoch, and in the current system timezone.

The NONE type is used to calculate values from an expression speci-
fied in the value parameter, without parsing additional data from the
buffer.
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Type Name Length Comments

NONE 0 Used for calculated fields

BOOLEAN 1 0 = False, 1-255 = True

CHAR 1 Unsigned Integer

E_UINT E Unsigned Integer

UINT8 1 Unsigned Integer

UINT16 2 Unsigned Integer

UINT24 3 Unsigned Integer

UINT32 4 Unsigned Integer

UINT40 5 Unsigned Integer

UINT48 6 Unsigned Integer

UINT56 7 Unsigned Integer

UINT64 8 Unsigned Integer

E_INT E Signed Integer

INT8 1 Signed Integer

... ... (according for INT16 to INT56)

INT64 8 Signed Integer

FLOAT 4 IEEE 754 Single-Precision Float

DOUBLE 8 IEEE 754 Double-Precision Float

ABSOLUTE_TIME E Unsigned Integer, Decoded as Timestamp

BYTES E Bytes, Variable Length, Requires Size Expression

UINT_BYTES P Length-prefixed Bytes, Requires Parameter size_len

STRING E String, Requires Parameter charset

UINT_STRING P Length-Prefixed String, Requires Parameters charset and
size_len

STRINGZ D Null-Terminated String, Requires Parameter charset

ETHER 6 Ethernet MAC Address, Formatted as xx:xx:xx:xx:xx:xx

IPv4 4 IPv4 Address, Network Byte Order, Formatted String

IPv6 16 IPv6 Address, Network Byte Order, Formatted String

GUID 16 UUID, Formatted as UUID String

EUI64 8 EUI64, Formatted as xx:xx:xx:xx:xx:xx:xx:xx

The length of fixed-length fields is specified in bytes.
The following types are supported by Wireshark, and are reserved but not implemented yet in PRE
Workbench: RELATIVE_TIME, PROTOCOL, IEEE_11073_SFLOAT, IEEE_11073_FLOAT, IPXNET,
FRAMENUM, PCRE, STRINGZPAD, FCWWN, AX25, VINES, OID, REL_OID, SYSTEM_ID

Table 3: Predefined types
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All types support the optional show parameter, which contains ei-
ther an internal function name or a format string, either of which
is applied to the parsed value before displaying it. For example,
UINT8(show="hex") or UINT8(show="0x%02x") to display the value
15 as 0x0f.

1 /* unsigned integer, 4 byte, little endian. */

2 name_length UINT32(endianness="<")

3

4 /* character string in UTF-8 encoding, referencing a previous

field for its size. */

5 name STRING[name_length](charset="utf-8")

6

7 /* IP version 4 address, in binary, in network byte order. */

8 src_addr IPv4

9

10 /* calculates a value using an expression, without parsing data

*/

11 length_in_bits NONE(value=(name_length * 8))

Listing 3: Examples of using predefined types with parameters

b.1.3 struct

A struct is defined as an ordered list of named field definitions,
where each field has a type. The size of a struct equals the sum of the
sizes of all contained fields, no padding is applied automatically. The
value resulting from parsing a struct is an ordered dictionary, with
the field names as keys and the parse results of the fields as values.
Multiple examples of struct type instances are shown in Listing 4.

b.1.4 repeat

Instances of the repeat type class can be used to repeatedly parse a
specified child type. The number of repetitions can be specified in
several ways: The times parameter can be used to specify the number
of repetitions up front as the result of an expression (similar to a for
loop in common programming languages). For sample code using this
parameter, see example A in Listing 4. Alternatively, an expression can
be passed in the until parameter which will be evaluated after each
parsing of the child type, terminating the loop if it returns true (like a
do-until-loop, see example B). Another possibility is repetition until a
parse error occurs, which is possible by setting until_invalid=true

(see example C). A typical case where this can be used is if each
repetition starts with a magic value, enforced via the magic parameter.
Finally, if no parameter is specified at all, the child type is repeated
until the data runs out (see example D).
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1 /* A) Number of repetitions specified up-front */

2 Int32Array struct(endianness=">") {

3 count UINT16

4 items repeat(times=(count)) INT32

5 }

6

7 /* B) Conditional repetition, until parsed value is zero */

8 Int32UntilZero repeat(until=(this[-1] == 0))

9 INT32(endianness=">")

10

11 /* C) Repetition until parsing fails, here: until magic != 255 */

12 MagicArray repeat(until_invalid=true) struct {

13 magic_byte UINT8(magic=255)

14 value_byte UINT8

15 }

16

17 /* D) Repetition until end of buffer, here: buffer length must be

divisible by 3, otherwise parsing fails */

18 RepeatTillEnd repeat struct {

19 a UINT8

20 b UINT8

21 c UINT8

22 }

Listing 4: Examples with struct and repeat types

In all cases, the parse result is an ordered list of the parse results of
the child type.

b.1.5 variant

The variant type class can be used to try different child types in
sequence until the buffer can be successfully parsed. A typical use
case is different struct child types, each starting with a different
magic number enforced with the magic parameter. A mismatching
magic number causes the parsing to fail, so the next child type is tried.
For example, the internal PCAP file parser uses a construct similar
to Listing 5, trying out different file formats and byte orders until a
match is found. If none of the variants match, the whole composite
type returns a parse error.

1 CaptureFile variant {

2 PcapngFile(endianness=">")

3 PcapngFile(endianness="<")

4 PcapFile(endianness=">")

5 PcapFile(endianness="<")

6 }

Listing 5: Example of a variant type
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b.1.6 switch

The switch type class serves a similar purpose as variant, namely to
parse a buffer with different child types depending on the contents.
However, unlike the variant, the switch type allows the selection of
the child type based on a preceding value, e.g. in a header structure,
while the variant selects based on the parsed contents.

Analogous to switch-case statements in common programming
languages, an expression can be specified after the switch keyword
whose value is compared to the values after the case keywords. The
child type specified at the first matching case is used to parse the
buffer. An example is shown in Listing 6.

The current implementation does not support a default case yet,
however, this could be implemented either by extending the syntax
with a default keyword, or by defining a sentinel value that matches
everything.

1 MyPacket struct {

2 header struct {

3 type UINT8

4 }

5 payload switch (header.type) {

6 case 1: Payload1

7 case 2: Payload2

8 }

9 }

10 Payload1 struct { ... }

11 Payload2 struct { ... }

Listing 6: Example of a switch type

b.1.7 union

The union type is very similar to the variant type. It also parses the
same byte range with multiple different types. The main difference
is that parsing is not stopped after the first successful parse with one
child type. Instead, the buffer is parsed with all child types, and a
dictionary containing all parse results is returned. If parsing should
also continue if parse errors occur in some child types, the parameter
ignore_errors=true is used. Example code is shown in Listing 7.

1 UnsignedOrSigned union {

2 unsigned UINT16

3 signed INT16

4 }

Listing 7: Example of a union type
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b.1.8 bits

Using the bits type, a packed bit field is described. It can be used for
integer values containing bitwise or-ed flags, as well as for numeric
fields which do not align to byte boundaries. Example code is shown
in Listing 8.

A bits definition consists of an ordered list of fields, each described
by a field name and the length in bits. By specifying a length of one
bit, a single-bit flag can be defined. Otherwise, the field is parsed as
an unsigned integer. Signed integers are currently unsupported in bit
fields. Implementation-wise, the bits type is a special case in that it
does not consist of child types, but still returns a composite result.
The parse result is an ordered dictionary mapping the field name to
the numeric value (see Figure 27).

If little-endian encoding is configured, the bytes making up the
bit field are reversed byte-wise first, before the individual bits are
extracted.

1 TCP_flags bits(endianness=">") {

2 hdr_len : 4

3
_reserved : 3

4 NS : 1

5 CWR : 1

6 ECE : 1

7 URG : 1

8 ACK : 1

9 PSH : 1

10 RST : 1

11 SYN : 1

12 FIN : 1

13 }

Listing 8: Example of bits type describing the flags in the TCP header

b.2 parameters

All types can be parameterized to specify additional information
on how to parse or display this field. Some types have required
parameters, which lead to a parse error if omitted. The parameter
size has a special abbreviated syntax, allowing to use BYTES[42]

instead of BYTES(size=(42)).
The language differentiates between (constant) values and (dynamic)

expressions. Syntactically, each parameter is assigned a value. The
value is interpreted at compile time of the expression, i.e. only once
even if a repeat type is repeated multiple times.

Special possible values are expressions and named type references.
Expressions are wrapped in parenthesis, marking them to be inter-
preted at data parse time. They are described in detail in the next
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Figure 27: Parse tree of the flags in the TCP header

section. Named type references are used with the parse_with param-
eter, which allows a byte array with predefined length to be parsed
with another type. Examples for these special values are provided in
Listing 9.

1 MyFrame struct {

2 length UINT8

3 /* short for BYTES(size=(length - 1), parse_with=MyPayloadType)

4 (length - 1) is an expression, evaluated at data parse time.

5 MyPayloadType references another type. */

6 payload BYTES[length - 1](parse_with=MyPayloadType)

7 }

8 MyPayloadType struct { ... }

Listing 9: Example of parameters with expression and type reference

b.3 expressions

As opposed to other value types like strings or numbers, expressions
are evaluated at data parse time, i.e. each time a field of that type is
parsed, so in a repeat type, at each repetition. The general syntax is
borrowed from C and Java.

Fields that were parsed earlier on can be referenced in an expression,
making it possible to calculate field or array lengths from any previous
field value. All fields from the current structure, or from a parent
structure as seen in the parsing stack, can be directly accessed by
their name (see example in Listing 10). This means the language uses
dynamic scope, as opposed to lexical scope, where only elements from
parent structures as seen in the Abstract Syntax Tree (AST) would be
accessible (see example in Listing 11). Fields from child constructed
types are accessible using the member operator (e.g. header.length)
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Precedence Type Operators

1 Conjunctions || &&

2 Equality == !=

3 Comparison < > <= >=

4 Math (lower) + - & | ˆ

5 Math (higher) * / << >>

6 Primary (...) f(x) a[i] a.b

Table 4: Operators in increasing order of precendence

Name Description

hex Returns a hex string representation of the parameter.

dec Returns a decimal string representation of the pa-
rameter.

dotted_quad Returns a dot-separated decimal representation of
the bytes passed as a parameter, like in an IPv4

address.

ip6 Formats a bytes object of length 16 as an IPv6 ad-
dress.

len Returns the length of the parameter.

snip Truncates the parameter to 32 bytes, if longer.

pad Returns the number of bytes required to pad the
current buffer to a multiple of N bytes.

Table 5: Built-in functions

and the array index operator (e.g. values[0]), which can also be
combined.

Math and bitwise operations are supported as well. A full list of
supported operators is provided in Table 4. A number of built-in
functions is available. For a complete list, see Table 5. In the current
implementation, functions are always pure (they do not have side
effects) and always have exactly one parameter. It is not possible to
define custom functions directly in the language, but PRE Workbench
plugins (see Section 5.4.2) can register additional functions by using
the @ExprFunctions.register() annotation.
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1 MyHeader1 struct {

2 length UINT8

3 payload MyPayload

4 }

5 MyHeader2 struct(endianness="<") {

6 length UINT32

7 payload MyPayload

8 }

9 MyPayload struct {

10 /* Dynamic scope rules allow ’length’ in the following

11 expression to access the length field of whichever struct

12 MyPayload was referenced from. With lexical scope, none

13 of the length fields would be accessible here. */

14 content BYTES[length]

15 }

Listing 10: Example of dynamic scope

1 MyPacket struct {

2 length UINT8

3 payload struct {

4 /* Lexical scope rules allow ’length’ in the following

5 expression to access the length field in MyPacket, because

6 the containing struct is a parent in the AST. */

7 content BYTES[length]

8 }

9 }

Listing 11: Example of lexical scope
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c.1 formal specification of protocol grammar defini-
tion language

1 grammar_file: type_definition*
2 type_definition: IDENTIFIER type_instance

3

4 // Type instances

5 type_instance: named | struct | repeat | variant | switch |

6 union | bits

7

8 named: IDENTIFIER params

9

10 struct: "struct" params "{" field* "}"

11 field: IDENTIFIER type_instance

12

13 repeat: "repeat" params type_instance

14

15 variant: "variant" params "{" type_instance* "}"

16

17 switch: "switch" expression params "{"

18 ("case" expression ":" type_instance)*
19 "}"

20

21 union: "union" params "{" (IDENTIFIER type_instance)* "}"

22

23 bits: "bits" params "{" (IDENTIFIER ":" number)* "}"

24

25 // Parameters

26 params: ("[" size_expr "]")? ("(" (IDENTIFIER value)* ")")?

27 value: string | number | dict | list | "true" | "false" | "null"

28 | "(" expr_value ")"

29 | named

30

31

32 // Static value types

33 list : "[" [value ("," value)*] "]"

34 dict : "{" [pair ("," pair)*] "}"

35 pair : string ":" value

36 number: NUMBER

37 string: ESCAPED_STRING

38

39 // Definitions for expressions and comments are omitted for

brevity.

Listing 12: Formal specification of Protocol Grammar Definition Language

87
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c.2 generated wireshark dissector

1 --------------------------------------------

2 -- init

3 MyProto_proto = Proto("MyProto", "MyProto Protocol")

4

5 --------------------------------------------

6 -- ws_field_defs

7 local f_MyProto_magic = ProtoField.uint32("MyProto.magic", "magic

", base.DEC)

8 local f_MyTLV_type = ProtoField.uint16("MyTLV.type", "type",

base.DEC)

9 local f_MyTLV_length = ProtoField.uint16("MyTLV.length", "length"

, base.DEC)

10 local f_MyTLV_payload = ProtoField.bytes("MyTLV.payload", "

payload", base.NONE)

11 MyProto_proto.fields = {f_MyProto_magic,f_MyTLV_type,

f_MyTLV_length,f_MyTLV_payload}

12

13 --------------------------------------------

14 -- parser functions

15 function MyProto_proto.dissector(buffer, pinfo, tree)

16 local subtree = tree:add(MyProto_proto, buffer(), "Protocol

Data MyProto")

17 local fieldValues = {}

18 end_offset = parse_MyProto(buffer, pinfo, subtree, "",

fieldValues)

19 subtree:set_len(end_offset)

20 end

21

22 -- definition MyProto

23 function parse_MyProto(buffer, pinfo, treenode, title_prefix,

fval)

24 local subtree = treenode:add(MyProto_proto, buffer(),

title_prefix .. "MyProto")

25 local offset = 0

26 local field_item

27 -- struct MyProto

28 -- field MyProto_magic UINT32

29 len = 4 -- static length

30 field_item = subtree:add(f_MyProto_magic, buffer(offset, len))

31 fval[’magic’] = buffer(offset, len):uint()

32 if fval[’magic’] ~= 2864434397 then

33 field_item:add_expert_info(PI_MALFORMED, PI_ERROR, "magic

value mismatch, expected 2864434397, got " .. fval["magic

"])

34 end

35 offset = offset + len

36

37 -- repeat MyProto_tlvs

38 while offset < buffer:len() do

39 -- named MyProto_tlvs_



C.3 pgdl definition of ethernet, ipv4 and tcp header 89

40 offset = offset + parse_MyTLV(buffer(offset), pinfo, subtree, ’

tlvs: ’, fval)

41 if false then break end

42 end

43 subtree:set_len(offset)

44 return offset

45 end

46

47 -- definition MyTLV

48 function parse_MyTLV(buffer, pinfo, treenode, title_prefix, fval)

49 local subtree = treenode:add(MyProto_proto, buffer(),

title_prefix .. "MyTLV")

50 local offset = 0

51 local field_item

52 -- struct MyTLV

53 -- field MyTLV_type UINT16

54 len = 2 -- static length

55 field_item = subtree:add(f_MyTLV_type, buffer(offset, len))

56 fval[’type’] = buffer(offset, len):uint()

57 offset = offset + len

58

59 -- field MyTLV_length UINT16

60 len = 2 -- static length

61 field_item = subtree:add(f_MyTLV_length, buffer(offset, len))

62 fval[’length’] = buffer(offset, len):uint()

63 offset = offset + len

64

65 -- field MyTLV_payload BYTES

66 len = fval[’length’] -- expression-based length

67 field_item = subtree:add(f_MyTLV_payload, buffer(offset, len))

68 offset = offset + len

69

70 subtree:set_len(offset)

71 return offset

72 end

73

74

75

76 --------------------------------------------

77 -- registration

78 local dissector_table = DissectorTable.get("wtap_encap")

79 dissector_table:add(148, MyProto_proto)

Listing 13: MyProto.lua

c.3 pgdl definition of ethernet, ipv4 and tcp header

1 ETHER_header struct(endianness=">") {

2 dst_mac ETHER

3 src_mac ETHER

4 ethertype UINT16
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5 }

6 IP4_header struct(endianness=">") {

7 fields bits {

8 version : 4

9 header_len : 4

10 tos : 8

11 packet_len : 16

12 ident : 16

13 reserved_flag : 1

14 dont_fragment : 1

15 more_fragments : 1

16 fragment_offset : 13

17 }

18 ttl UINT8

19 protocol UINT8

20 header_checksum UINT16

21 src_ip IPv4

22 dst_ip IPv4

23 }

24 TCP_header struct(endianness=">") {

25 src_port UINT16

26 dst_port UINT16

27 sequence_number UINT32

28 ack_number UINT32

29 flags bits {

30 hdr_len : 4

31 reserved : 3

32 NS : 1

33 CWR: 1

34 ECE:1

35 URG:1

36 ACK:1

37 PSH:1

38 RST:1

39 SYN:1

40 FIN:1

41 }

42 window_size_value UINT16

43 checksum UINT16

44 urgent_pointer UINT16

45 options BYTES[b.hdr_len * 4 - 20](parse_with=TCP_options)

46 }

47 TCP_options repeat variant {

48 UINT8(description="End of options", magic=0)

49 UINT8(description="No operation (padding)", magic=1)

50 struct (description="Regular option") {

51 option_kind UINT8

52 option_length UINT8

53 option_data BYTES[option_length]

54 }

55 }

Listing 14: Definition of Ethernet, IPv4 and TCP header in PGDL
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c.4 pcap and pcapng file format definition

1 pcap_file variant {

2 struct (endianness="<", section="pcap file, little endian"){

3 header pcap_header

4 packets repeat pcap_packet

5 }

6 struct (endianness=">", section="pcap file, big endian"){

7 header pcap_header

8 packets repeat pcap_packet

9 }

10 struct (endianness="<", section="pcapNG file, little endian")

{

11 first_block pcapng_first_block

12 rest_blocks repeat pcapng_block

13 }

14 struct (endianness=">", section="pcapNG file, big endian"){

15 first_block pcapng_first_block

16 rest_blocks repeat pcapng_block

17 }

18 }

19

20 pcap_header struct (section="pcap file header"){

21 magic_number UINT32(description="’A1B2C3D4’ means the

endianness is correct", magic=2712847316)

22 version_major UINT16(description="major number of the file

format")

23 version_minor UINT16(description="minor number of the file

format")

24 thiszone INT32(description="correction time in seconds from

UTC to local time (0)")

25 sigfigs UINT32(description="accuracy of time stamps in the

capture (0)")

26 snaplen UINT32(description="max length of captured packed

(65535)")

27 encap_proto UINT32(description="type of data link (1 =

ethernet)")

28 }

29

30 pcap_packet struct {

31 pheader struct (section="pcap packet header"){

32 ts_sec UINT32(description="timestamp seconds")

33 ts_usec UINT32(description="timestamp microseconds")

34 incl_len UINT32(description="number of octets of packet

saved in file")

35 orig_len UINT32(description="actual length of packet")

36 }

37 payload BYTES[pheader.incl_len]

38 }

39

40 pcapng_first_block struct (section="pcapNG first block"){
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41 block_type UINT32(magic=0x0A0D0D0A, color="#999900", show="0x

%08X")

42 block_length UINT32(color="#666600")

43 block_payload struct {

44 byte_order_magic UINT32(magic=439041101, color="green",

show="0x%08X")

45 version_major UINT16

46 version_minor UINT16

47 section_length INT64

48 options BYTES[block_length-28](parse_with=pcapng_options)

49 }

50 block_length2 UINT32(color="#666600")

51 }

52

53 pcapng_block struct (section="pcapNG block"){

54 block_type UINT32(color="#999900", show="0x%08X")

55 block_length UINT32(color="#666600")

56 block_payload BYTES[block_length - 12](parse_with=

pcapng_block_payload)

57 block_length2 UINT32(color="#666600")

58 }

59

60 pcapng_block_payload switch block_type {

61 case 0x0A0D0D0A: pcapng_SHB

62 case 1: pcapng_IDB

63 case 3: pcapng_SPB

64 case 5: BYTES

65 case 6: pcapng_EPB

66 }

67

68 pcapng_SHB struct {

69 byte_order_magic UINT32(magic=439041101, color="green", show=

"0x%08X")

70 version_major UINT16

71 version_minor UINT16

72 section_length INT64

73 options pcapng_options

74 }

75

76 pcapng_IDB struct {

77 linktype UINT16

78 reserved UINT16

79 snaplen UINT32

80 options pcapng_options

81 }

82

83 pcapng_EPB struct {

84 interface_id UINT32

85 timestamp_hi UINT32

86 timestamp_lo UINT32

87 cap_length UINT32

88 orig_length UINT32
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89 payload BYTES[cap_length]

90 payload_padding BYTES[pad(4)](textcolor="#888888")

91 }

92

93 pcapng_SPB struct {

94 orig_length UINT32

95 payload BYTES[block_length - 16]

96 payload_padding BYTES[pad(4)](textcolor="#888888")

97 }

98

99 pcapng_options repeat struct {

100 code UINT16(color="#660666")

101 length UINT16

102 value BYTES[length](textcolor="#d3ebff")

103 padding BYTES[pad(4)](textcolor="#666")

104 }

Listing 15: Definition of the PCAP and PCAPNG file formats in PGDL
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